РУБРИКИ

: Функция и ее свойства

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

: Функция и ее свойства

: Функция и ее свойства

Русская гимназия

КОНСПЕКТ

на тему:

Функция

Выполнил

ученик 10«Ф» класса Бурмистров Сергей

Руководитель

учитель Математики

Юлина О.А.

Нижний Новгород

1997 год

Функция и её свойства

Функция- зависимость переменной у от переменной x, если

каждому значению х соответствует единственное значение у.

Переменная х- независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- значение у, соответствующее заданному значению х.

Область определения функции- все значения, которые принимает независимая

переменная.

Область значений функции (множество значений)- все значения, которые

принимает функция.

Функция является четной- если для любого х из области определения

функции выполняется равенство f(x)=f(-x)

Функция является нечетной- если для любого х из области

определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х1 и х2

, таких, что х1< х2, выполняется

неравенство f(х1)<f(х2)

Убывающая функция- если для любых х1 и х2

, таких, что х1< х2, выполняется

неравенство f(х1)>f(х2)

Способы задания функции

¨ Чтобы задать функцию, нужно указать способ, с помощью которого для

каждого значения аргумента можно найти соответствующее значение функции.

Наиболее употребительным является способ задания функции с помощью формулы

у=f(x), где f(x)-

íåêîòîðîå

âыðàæåíèå с переменной х

. В таком случае говорят, что функция задана формулой или что функция задана

аналитически.

¨ На практике часто используется табличный способ задания

функции. При этом способе приводится таблица, указывающая значения функции для

имеющихся в таблице значений аргумента. Примерами табличного задания функции

являются таблица квадратов, таблица кубов.

Виды функций и их свойства

1) Постоянная функция- функция, заданная формулой у=b, где

b-некоторое число. Графиком постоянной функции у=b является прямая,

параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

2) Прямая пропорциональность- функция, заданная формулой у=kx,

где к¹0. Число k называется коэффициентом пропорциональности

.

Cвойства функции y=kx:

1. Область определения функции- множество всех действительных чисел

2. y=kx - нечетная функция

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

3)Линейная функция- функция, которая задана формулой y=kx+b, где

k и b-действительные числа. Если в частности, k=0, то

получаем постоянную функцию y=b; если b=0, то получаем прямую

пропорциональность y=kx.

Свойства функции y=kx+b:

1. Область определения- множество всех действительных чисел

2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

Графиком функции является прямая.

4)Обратная пропорциональность- функция, заданная формулой y=k/х,

где k¹0 Число k называют коэффициентом обратной

пропорциональности.

Свойства функции y=k/x:

1. Область определения- множество всех действительных чисел кроме нуля

2. y=k/x- нечетная функция

3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке

(-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на

промежутке (0;+¥).

Графиком функции является гипербола.

5)Функция y=x2

Свойства функции y=x2:

1. Область определения- вся числовая прямая

2. y=x2 - четная функция

3. На промежутке [0;+¥) функция возрастает

4. На промежутке (-¥;0] функция убывает

Графиком функции является парабола.

6)Функция y=x3

Свойства функции y=x3:

1. Область определения- вся числовая прямая

2. y=x3 -нечетная функция

3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола

7)Степенная функция с натуральным показателем- функция, заданная формулой

y=xn, где n- натуральное число. При n=1 получаем функцию

y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2;

y=x3. Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция

y=xn обладает теми же свойствами, что и функция y=x2.

График функции напоминает параболу y=x2, только ветви графика при

|х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем «теснее

прижимаются» к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае

функция y=xn обладает теми же свойствами, что и функция y=x

3. График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная

формулой y=x-n, где n- натуральное число. При n=1

получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x

-n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x-2:

1. Функция определена при всех x¹0

2. y=x-2 - четная функция

3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

9)Функция y=Öх

Свойства функции y=Öх:

1. Область определения - луч [0;+¥).

2. Функция y=Öх - общего вида

3. Функция возрастает на луче [0;+¥).

10)Функция y=3Öх

Свойства функции y=3Öх:

1. Область определения- вся числовая прямая

2. Функция y=3Öх нечетна.

3. Функция возрастает на всей числовой прямой.

11)Функция y=nÖх

При четном n функция обладает теми же свойствами, что и функция y=Öх

. При нечетном n функция y=nÖх обладает теми же

свойствами, что и функция y=3Öх.

12)Степенная функция с положительным дробным показателем- функция,

заданная формулой y=xr, где r- положительная

несократимая дробь.

Свойства функции y=xr:

1. Область определения- луч [0;+¥).

2. Функция общего вида

3. Функция возрастает на [0;+¥).

На рисунке изображен график функции y=x5/2. Он заключен

между графиками функций y=x2 и y=x3, заданных на

промежутке [0;+¥).Подобный вид имеет любой график функции вида y=x

r, где r>1.

На рисунке изображен график функции y=x2/3. Подобный вид

имеет график любой степенной функции y=xr , где 0<r<1

13)Степенная функция с отрицательным дробным показателем-функция,

заданная формулой y=x-r, где r- положительная

несократимая дробь.

Свойства функции y=x-r:

1. Обл. определения -промежуток (0;+¥)

2. Функция общего вида

3. Функция убывает на (0;+¥)

14)Обратная функция

Если функция y=f(x) такова, что для любого ее значения yo

уравнение f(x)=yo имеет относительно х единственный

корень, то говорят, что функция f обратима.

Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и

областью ее значений является промежуток Y, то у нее существует обратная

функция, причем обратная функция определена и возрастает(убывает) на Y.

Таким образом, чтобы построить график функции, обратной к функции y=f(x),

надо график функции y=f(x) подвергнуть преобразованию симметрии относительно

прямой y=x.

15)Сложная функция- функция, аргументом которой является другая любая функция.

Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2.

Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией.


© 2010
Частичное или полное использование материалов
запрещено.