РУБРИКИ |
Контрольная: Понятие функции |
РЕКОМЕНДУЕМ |
|
Контрольная: Понятие функцииКонтрольная: Понятие функцииИНСТИТУТ БИЗНЕСА, ПРАВА И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ КОНТРОЛЬНАЯ РАБОТА по дисциплине МАТЕМАТИКА на тему Понятие функции. Область определения функции. Способы задания функции Выполнил: Мальский Эдуард Александрович, студент 2 курса юридического факультета заочного отделения группа 25-ЮЗП Преподаватель: Оценка:_______________ Подпись преподавателя:_______________ 2004 г. Оглавление контрольной работы по дисциплине «Математика» на тему «Понятие функции. Область определения функции. Способы задания функции» Введение...............................3 1. Функция и её свойства......................4 2. Способы задания функции...........................5 3. Виды функций и их свойства....................6 Заключение............................11 Список использованной литературы...................12 Введение. Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r 2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости. Раздел 1. Функция и её свойства. Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у. Переменная х- независимая переменная или аргумент. Переменная у- зависимая переменная Значение функции- значение у, соответствующее заданному значению х. Область определения функции- все значения, которые принимает независимая переменная. Область значений функции (множество значений)- все значения, которые принимает функция. Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x) Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x) Возрастающая функция- если для любых х1 и х2 , таких, что х1< х2, выполняется неравенство f(х1)<f(х2) Убывающая функция- если для любых х1 и х2 , таких, что х1< х2, выполняется неравенство f(х1)>f(х2) Раздел 2. Способы задания функции. Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x) , где f(x)- с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически. На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов. Раздел 2. Виды функций и их свойства. 1) Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат 2) Прямая пропорциональность- функция, заданная формулой у=kx, где к¹0. Число k называется коэффициентом пропорциональности . Cвойства функции y=kx: 1. Область определения функции- множество всех действительных чисел 2. y=kx - нечетная функция 3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой 3)Линейная функция- функция, которая задана формулой y=kx+b, где k и b-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx. Свойства функции y=kx+b: 1. Область определения- множество всех действительных чисел 2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна. 3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой Графиком функции является прямая. 4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k¹0 Число k называют коэффициентом обратной пропорциональности. Свойства функции y=k/x: 1. Область определения- множество всех действительных чисел кроме нуля 2. y=k/x- нечетная функция 3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥). Графиком функции является гипербола. 5)Функция y=x2 Свойства функции y=x2: 1. Область определения- вся числовая прямая 2. y=x2 - четная функция 3. На промежутке [0;+¥) функция возрастает 4. На промежутке (-¥;0] функция убывает Графиком функции является парабола. 6)Функция y=x3 Свойства функции y=x3: 1. Область определения- вся числовая прямая 2. y=x3 -нечетная функция 3. Функция возрастает на всей числовой прямой Графиком функции является кубическая парабола 7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше. Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n. Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xn обладает теми же свойствами, что и функция y=x 3. График функции напоминает кубическую параболу. 8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4. Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x -n обладает в основном теми же свойствами, что и функция y=1/х. Пусть n- четное число, например n=2. Свойства функции y=x-2: 1. Функция определена при всех x¹0 2. y=x-2 - четная функция 3. Функция убывает на (0;+¥) и возрастает на (-¥;0). Теми же свойствами обладают любые функции при четном n, большем двух. 9)Функция y=Öх Свойства функции y=Öх: 1. Область определения - луч [0;+¥). 2. Функция y=Öх - общего вида 3. Функция возрастает на луче [0;+¥). 10)Функция y=3Öх Свойства функции y=3Öх: 1. Область определения- вся числовая прямая 2. Функция y=3Öх нечетна. 3. Функция возрастает на всей числовой прямой. 11)Функция y=nÖх При четном n функция обладает теми же свойствами, что и функция y=Öх . При нечетном n функция y=nÖх обладает теми же свойствами, что и функция y=3Öх. 12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь. Свойства функции y=xr: 1. Область определения- луч [0;+¥). 2. Функция общего вида 3. Функция возрастает на [0;+¥). На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+¥).Подобный вид имеет любой график функции вида y=xr , где r>1. На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0<r<1 13)Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь. Свойства функции y=x-r: 1. Обл. определения -промежуток (0;+¥) 2. Функция общего вида 3. Функция убывает на (0;+¥) 14)Обратная функция Если функция y=f(x) такова, что для любого ее значения yo уравнение f(x)=yo имеет относительно х единственный корень, то говорят, что функция f обратима. Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y. Таким образом, чтобы построить график функции, обратной к функции y=f(x), надо график функции y=f(x) подвергнуть преобразованию симметрии относительно прямой y=x. 15)Сложная функция- функция, аргументом которой является другая любая функция. Возьмем, к примеру, функцию y=x+4. Подставим в аргумент функцию y=x+2. Получается: y(x+2)=x+2+4=x+6. Это и будет являться сложной функцией. Заключение. тематики вообще. Оно не во зникло сразу в таком виде, как мы им пользуем ся сейчас, а как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегре ческой математике. Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин /определения он не дал вообще/ он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". Ученик Лейбница Иоганн Бернулли пошел дальше своего учителя. Он дает более общее определение функции, освобождая последнее от геометрических представлений и терминов: "функцией переменной величины называется количество, образованное каким угодно способом из этой величины и постоянных". 03.02.2004 года Список использованной литературы в контрольной работе по дисциплине «Математика» на тему «Понятие функции. Область определения функции. Способы задания функции» 1. Евстафьева В.Ю. Математика. Алгебра. Функции. Анализ данных. Москва: "Дрофа", 2000 года. 2. Ильин В.А., Куркина А.В. Высшая математика. Москва: "Проспект", 2003 года. 3. Колмогоров А. Н. Алгебра и начала анализа. Москва: "Просвещение", 1990 года. 4. Максименко В.Н. Математический анализ в примерах и задачах: Часть. 2. Москва: "НГТУ", 2002 года. 5. Никольский С.Н. Курс математического анализа, учебник. Москва: "Физматлит", 2002 года. |
|
© 2010 |
|