РУБРИКИ

Курсовая: Сумма делителей числа

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

Курсовая: Сумма делителей числа

[312, 840]

[313, 314]

[314, 474]

[315, 624]

[316, 560]

[317, 318]

[318, 648]

[319, 360]

[320, 762]

[321, 432]

[322, 576]

[323, 360]

[324, 847]

[325, 434]

[326, 492]

[327, 440]

[328, 630]

[329, 384]

[330, 864]

[331, 332]

[332, 588]

[333, 494]

[334, 504]

[335, 408]

[336, 992]

[337, 338]

[338, 549]

[339, 456]

[340, 756]

[341, 384]

[342, 780]

[343, 400]

[344, 660]

[345, 576]

[346, 522]

[347, 348]

[348, 840]

[349, 350]

[350, 744]

[351, 560]

[352, 756]

[353, 354]

[354, 720]

[355, 432]

[356, 630]

[357, 576]

[358, 540]

[359, 360]

[360, 1170]

[361, 381]

[362, 546]

[363, 532]

[364, 784]

[365, 444]

[366, 744]

[367, 368]

[368, 744]

[369, 546]

[370, 684]

[371, 432]

[372, 896]

[373, 374]

[374, 648]

[375, 624]

[376, 720]

[377, 420]

[378, 960]

[379, 380]

[380, 840]

[381, 512]

[382, 576]

[383, 384]

[384, 1020]

[385, 576]

[386, 582]

[387, 572]

[388, 686]

[389, 390]

[390, 1008]

[391, 432]

[392, 855]

[393, 528]

[394, 594]

[395, 480]

[396, 1092]

[397, 398]

[398, 600]

[399, 640]

[400, 961]

[401, 402]

[402, 816]

[403, 448]

[404, 714]

[405, 726]

[406, 720]

[407, 456]

[408, 1080]

[409, 410]

[410, 756]

[411, 552]

[412, 728]

[413, 480]

[414, 936]

[415, 504]

[416, 882]

[417, 560]

[418, 720]

[419, 420]

[420, 1344]

[421, 422]

[422, 636]

[423, 624]

[424, 810]

[425, 558]

[426, 864]

[427, 496]

[428, 756]

[429, 672]

[430, 792]

[431, 432]

[432, 1240]

[433, 434]

[434, 768]

[435, 720]

[436, 770]

[437, 480]

[438, 888]

[439, 440]

[440, 1080]

[441, 741]

[442, 756]

[443, 444]

[444, 1064]

[445, 540]

[446, 672]

[447, 600]

[448, 1016]

[449, 450]

[450, 1209]

[451, 504]

[452, 798]

[453, 608]

[454, 684]

[455, 672]

[456, 1200]

[457, 458]

[458, 690]

[459, 720]

[460, 1008]

[461, 462]

[462, 1152]

[463, 464]

[464, 930]

[465, 768]

[466, 702]

[467, 468]

[468, 1274]

[469, 544]

[470, 864]

[471, 632]

[472, 900]

[473, 528]

[474, 960]

[475, 620]

[476, 1008]

[477, 702]

[478, 720]

[479, 480]

[480, 1512]

[481, 532]

[482, 726]

[483, 768]

[484, 931]

[485, 588]

[486, 1092]

[487, 488]

[488, 930]

[489, 656]

[490, 1026]

[491, 492]

[492, 1176]

[493, 540]

[494, 840]

[495, 936]

[496, 992]

[497, 576]

[498, 1008]

[499, 500]

[500, 1092]

[501, 672]

[502, 756]

[503, 504]

[504, 1560]

[505, 612]

[506, 864]

[507, 732]

[508, 896]

[509, 510]

[510, 1296]

[511, 592]

[512, 1023]

[513, 800]

[514, 774]

[515, 624]

[516, 1232]

[517, 576]

[518, 912]

[519, 696]

[520, 1260]

[521, 522]

[522, 1170]

[523, 524]

[524, 924]

[525, 992]

[526, 792]

[527, 576]

[528, 1488]

[529, 553]

[530, 972]

[531, 780]

[532, 1120]

[533, 588]

[534, 1080]

[535, 648]

[536, 1020]

[537, 720]

[538, 810]

[539, 684]

[540, 1680]

[541, 542]

[542, 816]

[543, 728]

[544, 1134]

[545, 660]

[546, 1344]

[547, 548]

[548, 966]

[549, 806]

[550, 1116]

[551, 600]

[552, 1440]

[553, 640]

[554, 834]

[555, 912]

[556, 980]

[557, 558]

[558, 1248]

[559, 616]

[560, 1488]

[561, 864]

[562, 846]

[563, 564]

[564, 1344]

[565, 684]

[566, 852]

[567, 968]

[568, 1080]

[569, 570]

[570, 1440]

[571, 572]

[572, 1176]

[573, 768]

[574, 1008]

[575, 744]

[576, 1651]

[577, 578]

[578, 921]

[579, 776]

[580, 1260]

[581, 672]

[582, 1176]

[583, 648]

[584, 1110]

[585, 1092]

[586, 882]

[587, 588]

[588, 1596]

[589, 640]

[590, 1080]

[591, 792]

[592, 1178]

[593, 594]

[594, 1440]

[595, 864]

[596, 1050]

[597, 800]

[598, 1008]

[599, 600]

[600, 1860]

[601, 602]

[602, 1056]

[603, 884]

[604, 1064]

[605, 798]

[606, 1224]

[607, 608]

[608, 1260]

[609, 960]

[610, 1116]

[611, 672]

[612, 1638]

[613, 614]

[614, 924]

[615, 1008]

[616, 1440]

[617, 618]

[618, 1248]

[619, 620]

[620, 1344]

[621, 960]

[622, 936]

[623, 720]

[624, 1736]

[625, 781]

[626, 942]

[627, 960]

[628, 1106]

[629, 684]

[630, 1872]

[631, 632]

[632, 1200]

[633, 848]

[634, 954]

[635, 768]

[636, 1512]

[637, 798]

[638, 1080]

[639, 936]

[640, 1530]

[641, 642]

[642, 1296]

[643, 644]

[644, 1344]

[645, 1056]

[646, 1080]

[647, 648]

[648, 1815]

[649, 720]

[650, 1302]

[651, 1024]

[652, 1148]

[653, 654]

[654, 1320]

[655, 792]

[656, 1302]

[657, 962]

[658, 1152]

[659, 660]

[660, 2016]

[661, 662]

[662, 996]

[663, 1008]

[664, 1260]

[665, 960]

[666, 1482]

[667, 720]

[668, 1176]

[669, 896]

[670, 1224]

[671, 744]

[672, 2016]

[673, 674]

[674, 1014]

[675, 1240]

[676, 1281]

[677, 678]

[678, 1368]

[679, 784]

[680, 1620]

[681, 912]

[682, 1152]

[683, 684]

[684, 1820]

[685, 828]

[686, 1200]

[687, 920]

[688, 1364]

[689, 756]

[690, 1728]

[691, 692]

[692, 1218]

[693, 1248]

[694, 1044]

[695, 840]

[696, 1800]

[697, 756]

[698, 1050]

[699, 936]

[700, 1736]

[701, 702]

[702, 1680]

[703, 760]

[704, 1524]

[705, 1152]

[706, 1062]

[707, 816]

[708, 1680]

[709, 710]

[710, 1296]

[711, 1040]

[712, 1350]

[713, 768]

[714, 1728]

[715, 1008]

[716, 1260]

[717, 960]

[718, 1080]

[719, 720]

[720, 2418]

[721, 832]

[722, 1143]

[723, 968]

[724, 1274]

[725, 930]

[726, 1596]

[727, 728]

[728, 1680]

[729, 1093]

[730, 1332]

[731, 792]

[732, 1736]

[733, 734]

[734, 1104]

[735, 1368]

[736, 1512]

[737, 816]

[738, 1638]

[739, 740]

[740, 1596]

[741, 1120]

[742, 1296]

[743, 744]

[744, 1920]

[745, 900]

[746, 1122]

[747, 1092]

[748, 1512]

[749, 864]

[750, 1872]

[751, 752]

[752, 1488]

[753, 1008]

[754, 1260]

[755, 912]

[756, 2240]

[757, 758]

[758, 1140]

[759, 1152]

[760, 1800]

[761, 762]

[762, 1536]

[763, 880]

[764, 1344]

[765, 1404]

[766, 1152]

[767, 840]

[768, 2044]

[769, 770]

[770, 1728]

[771, 1032]

[772, 1358]

[773, 774]

[774, 1716]

[775, 992]

[776, 1470]

[777, 1216]

[778, 1170]

[779, 840]

[780, 2352]

[781, 864]

[782, 1296]

[783, 1200]

[784, 1767]

[785, 948]

[786, 1584]

[787, 788]

[788, 1386]

[789, 1056]

[790, 1440]

[791, 912]

[792, 2340]

[793, 868]

[794, 1194]

[795, 1296]

[796, 1400]

[797, 798]

[798, 1920]

[799, 864]

[800, 1953]

[801, 1170]

[802, 1206]

[803, 888]

[804, 1904]

[805, 1152]

[806, 1344]

[807, 1080]

[808, 1530]

[809, 810]

[810, 2178]

[811, 812]

[812, 1680]

[813, 1088]

[814, 1368]

[815, 984]

[816, 2232]

[817, 880]

[818, 1230]

[819, 1456]

[820, 1764]

[821, 822]

[822, 1656]

[823, 824]

[824, 1560]

[825, 1488]

[826, 1440]

[827, 828]

[828, 2184]

[829, 830]

[830, 1512]

[831, 1112]

[832, 1778]

[833, 1026]

[834, 1680]

[835, 1008]

[836, 1680]

[837, 1280]

[838, 1260]

[839, 840]

[840, 2880]

[841, 871]

[842, 1266]

[843, 1128]

[844, 1484]

[845, 1098]

[846, 1872]

[847, 1064]

[848, 1674]

[849, 1136]

[850, 1674]

[851, 912]

[852, 2016]

[853, 854]

[854, 1488]

[855, 1560]

[856, 1620]

[857, 858]

[858, 2016]

[859, 860]

[860, 1848]

[861, 1344]

[862, 1296]

[863, 864]

[864, 2520]

[865, 1044]

[866, 1302]

[867, 1228]

[868, 1792]

[869, 960]

[870, 2160]

[871, 952]

[872, 1650]

[873, 1274]

[874, 1440]

[875, 1248]

[876, 2072]

[877, 878]

[878, 1320]

[879, 1176]

[880, 2232]

[881, 882]

[882, 2223]

[883, 884]

[884, 1764]

[885, 1440]

[886, 1332]

[887, 888]

[888, 2280]

[889, 1024]

[890, 1620]

[891, 1452]

[892, 1568]

[893, 960]

[894, 1800]

[895, 1080]

[896, 2040]

[897, 1344]

[898, 1350]

[899, 960]

[900, 2821]

[901, 972]

[902, 1512]

[903, 1408]

[904, 1710]

[905, 1092]

[906, 1824]

[907, 908]

[908, 1596]

[909, 1326]

[910, 2016]

[911, 912]

[912, 2480]

[913, 1008]

[914, 1374]

[915, 1488]

[916, 1610]

[917, 1056]

[918, 2160]

[919, 920]

[920, 2160]

[921, 1232]

[922, 1386]

[923, 1008]

[924, 2688]

[925, 1178]

[926, 1392]

[927, 1352]

[928, 1890]

[929, 930]

[930, 2304]

[931, 1140]

[932, 1638]

[933, 1248]

[934, 1404]

[935, 1296]

[936, 2730]

[937, 938]

[938, 1632]

[939, 1256]

[940, 2016]

[941, 942]

[942, 1896]

[943, 1008]

[944, 1860]

[945, 1920]

[946, 1584]

[947, 948]

[948, 2240]

[949, 1036]

[950, 1860]

[951, 1272]

[952, 2160]

[953, 954]

[954, 2106]

[955, 1152]

[956, 1680]

[957, 1440]

[958, 1440]

[959, 1104]

[960, 3048]

[961, 993]

[962, 1596]

[963, 1404]

[964, 1694]

[965, 1164]

[966, 2304]

[967, 968]

[968, 1995]

[969, 1440]

[970, 1764]

[971, 972]

[972, 2548]

[973, 1120]

[974, 1464]

[975, 1736]

[976, 1922]

[977, 978]

[978, 1968]

[979, 1080]

[980, 2394]

[981, 1430]

[982, 1476]

[983, 984]

[984, 2520]

[985, 1188]

[986, 1620]

[987, 1536]

[988, 1960]

[989, 1056]

[990, 2808]

[991, 992]

[992, 2016]

[993, 1328]

[994, 1728]

[995, 1200]

[996, 2352]

[997, 998]

[998, 1500]

[999, 1520]

[1000, 2340]

Теперь посмотрим, все ли числа являются суммой делителей какого-либо числа и

есть ли такие числа сумма делителей которых равна (в первых двух сотнях).

Ниже приведена таблица: [[4, 7]](на втором месте сумма делителей, а на первом

число с данной суммой делителей) . [[1, 1]], [2] (т.е. нет такого числа с

суммой делителей равной двум):

[1,1]

[2]

[2,3]

[3,4]

[5]

[5,6]

[4,7]

[7,8]

[9]

[10]

[11]

[6,12]

[11, 12]

[9,13]

[13,14]

[8,15]

[16]

[17]

[10,18]

[17,18]

[19]

[19.20]

[21]

[22]

[23]

[14,24]

[15,24]

[23,24]

[25]

[26]

[27]

[12, 28].

[29]

[29,30]

[16,31]

[25.31]

[21,32]

[31,32]

[33]

[34]

[35]

[22,36]

[37]

[37,38]

[18,39]

[27, 40]

[41]

[20,42]

[26,42]

[41,42].

[43]

[43,44].

[45]

[46]

[47]

[33,48].

[35,4 8]

[47,48]

[49]

[50]

[51]

[52]

[53]

[34,54]

[53, 54]

[55]

[28,56]

[39.56]

[49,57]

[58]

[59]

[24,60]

[38.60]

[59,60]

[61]

[61,62]

[32,63]

[64]

[65]

[66]

[67]

[67, 68]

[69]

[70]

[71]

[30,72]

[46,72]

[51,72]

[55,72]

[71,72]

[73]

[73,74]

[75]

[76]

[77]

[45,78]

[79]

[57,80]

[79,80]

[81]

[82]

[83]

[44,84]

[65,84]

[83,84]

[85]

[86]

[87]

[88]

[89]

[40, 90]

[58,90]

[89,90]

[36,91]

[92]

[50,93].

[94]

[95]

[42, 96]

[62,96]

[69,96]

[77,96]

[97]

[52,98]

[97,98]

[99]

[100]

[101]

[102]

[103]

[63,104]

[105]

[106]

[107]

[85,108]

[109]

[110]

[111]

[91, 112]

[113]

[74,114],

[115]

[116]

[117]

[118]

[119]

[54,120]

[56,120]

[87,120]

[95,120]

[81,121]

[122]

[123]

[48,124]

[75, 124]

[125]

[68,126]

[82.126]

[64,127]

[9 3,128]

[129]

[130]

[131]

[86,132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[76,140]

[141]

[142]

[143]

[66,144]

[70,144]

[94,144]

[145]

[146]

[147]

[178]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[99,156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[60,168]

[78,168]

[92,168]

[169]

[170]

[98,171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[88,180]

[181]

[182]

[183]

[184]

[185]

[80,186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[72,195]

[196]

[197]

[198]

[199]

[200]

Как мы заметили, есть такие числа, которые не являются суммой делителей ни

одного числа и так же есть такие числа, которые являются суммой делителей ни

одного, а нескольких чисел. Теперь посмотрим только те числа, которые

являются суммой делителей ни одного, а нескольких чисел:

[6,12], [11,12]

[10,18], [17,18]

[14,24], [15,24], [23,24]

[16,31]. [25,31]

[21,32], [31,32]

[20, 42], [26,42], [41,42]

[33,48], [35,48], [47,48]

[34,5 4], [53,54]

[28,56], [39,56]

[24,60], [38,60], [59, 60]

[30,72], [46,72], [51,72], [55,72], [71,72]

[57,80], [79,80]

[44,84], [65,84], [83,84]

[40,90], [58, 9 0], [89,90]

[42,96], [62,96], [69,96], [77,96]

[52,98], [97,98]

[54,120], [56, 120], [87,120], [95,120]

[48,124], [75,124]

[68,126], [82,126]

[66,144], [70, 144], [94,144]

[60,168], [78,168], [92,168]

Отсюда можно сделать вывод, что нахождение числа по его сумме делителей не

всегда возможно и не всегда однозначно.

Курсовая: Сумма делителей числа

Теперь построим график. По оси Х расположим числа, а по оси Y их сумму

делителей (числа от 1 до 1000):

Посмотрим, что же у нас получилось: на графике отчётливо просматриваются

несколько прямых линий, например, нижняя это – простые числа. Верхняя граница –

это наиболее сложные числа (имеющие наибольшее количество делителей) - это не

прямая, но и не парабола. Скорее всего, – это показательная функция (у = а

х).

В мемуарах Эйлера я нашел много интересных мне рассуждений(σ(n) – сумма

делителей числа n): Определив значение σ(n) мы ясно видим, что если p –

простое, то σ(p)= p + 1. σ(1)=1, а если число n – составное, то

σ(n)>1 + n.

Если a, b, c, d – различные простые числа, то мы видим:

σ(ab)=1+a+b+ab=(1+a)(1+b)= σ(a)σ(b)

σ(abcd)= σ(a)σ(b)σ(c)σ(d)

σ(a^2)=1+a+a2=Курсовая: Сумма делителей числа

σ(a^3)=1+a+a2+a3=Курсовая: Сумма делителей числа

И вообще

σ(nn)=Курсовая: Сумма делителей числа

Пользуясь этим:

σ(aqbwcedr)= σ(aq)σ(bw)σ(ce)σ(dr)

Например σ(360), 360 = 23*32*5 => σ(23

) σ(32) σ(5)=15*13*6=1170.

Чтобы показать последовательность сумм делителей приведём таблицу:

n

0

1

2

3

4

5

6

7

8

9

0

-134761281513

10

18122814242431183920

20

42323624603142405630

30

72326348544891386056

40

904296448478724812457

50

9372985412072120809060

60

1686296104127841446812696

70

14472195741144241409616880

80

1861211268422410813212018090

90

23411216812814412025298171156

Если σ(n) обозначает член любой этой последовательности, а σ(n -

1), σ(n - 2), σ(n - 3). предшествующие члены, то σ(n) всегда

можно получить по нескольким предыдущим членам:

σ(n) = σ(n - 1) + σ(n - 2) - σ(n - 5) - σ(n - 7) +

σ(n - 12) + σ(n - 15) - σ(n - 22) - σ(n – 26) + . (**)

Знаки «+» «-» в правой части формулы попарно чередуются. Закон чисел 1, 2, 5,

7, 12, 15.,которые мы должны вычитать из рассматриваемого числа n, станет

ясен если мы возьмем их разности:

Числа:1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100.

Разности: 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8.

В самом деле, мы имеем здесь поочередно все целые числа 1, 2, 3, 4, 5, 6, 7.

и нечетные 3, 5, 7,9 11.

Хотя эта последовательность бесконечна, мы должны в каждом случае брать

только те члены, для которых числа стоящие под знаком σ, еще

положительны, и опускать σ для отрицательных чисел. Если в нашей формуле

встретиться σ(0), то, поскольку его значение само по себе является

неопределённым, мы должны подставить вместо σ(0) рассматриваемое число

n. Примеры:

σ(1) = σ(0) =1

= 1

σ(2) = σ(1) + σ(0) =

1 + 2 = 3

.

σ(20) = σ(19)+σ(18)-σ(15)-

σ(13)+9σ(8)+σ(5)=20+39-24-14+15+6= 42

Доказательство теоремы (**) я приводить не буду.

Вообще, найти сумму всех делителей числа можно с помощью канонического

разложения натурального числа (это уже было сказано выше). Сумму делителей

числа n обозначают σ(n). Легко найти σ(n) для небольших

натуральных чисел, например σ(12) = 1+2+3+4+6+12=28(это было приведено

выше). Но при достаточно больших числах отыскивание всех делителей, а тем

более их суммы становится затруднительным. Совсем другое дело, если уже

известно, что каноническое

разложение числа n таково:Курсовая: Сумма делителей числа .

Его делителями являются все числа Курсовая: Сумма делителей числа

, для которых 0 ≤ βs ≤ αs, s = 1, .,

k. Ясно, что σ(n) представляет собой сумму всех таких чисел при различных

значениях показателей

β1, β2, . βk. Этот результат мы

получим раскрыв скобки в произведении

Курсовая: Сумма делителей числа

По формуле конечного числа членов геометрической прогрессии приходим к равенству

Курсовая: Сумма делителей числа (*)

По этой формуле σ(360) = Курсовая: Сумма делителей числа .

Формулу для вычисления значения функции σ(n) вывел замечательный

английский математик Джон Валлис(1616 - 1703) – один из основателей и первых

членов Лондонского Королевства общества (Академии наук). Он был первым из

английских математиков, начавших заниматься математическим анализом. Ему

принадлежат многие обозначения и термины, применяемые сейчас в математике, в

частности знак ∞ для обозначения бесконечности. Валлис вывел

удивительную формулу, представляющую число π в виде бесконечного

произведения:

Курсовая: Сумма делителей числа

Д. Валлис много занимался комбинаторикой и её приложениями к теории шифров,

не без основания считая себя родоначальником новой науки – криптологии (от

греч. «криптос» - тайный, «логос» - наука, учение). Он был одним из лучших

шифровальщиков своего времени и по поручению министра полиции Терло занимался

в республиканском правительстве Кромвеля расшифровкой посланий монархических

заговорщиков.

С функцией σ(n) связан ряд любопытных задач. Например:

1.) Найти пару целых чисел, удовлетворяющих условию: σ(m1)=m

2, σ(m2)=m1.

Некоторые из них не удаётся решить даже с использованием формулы (*). Так,

например, не иначе как подбором можно найти числа, для которых σ(n) есть

квадрат некоторого натурального числа. Такими числами являются 22, 66, 70,

81, 343, 1501, 4479865. Вот ещё две задачи, приведённые в 1657 г. Пьером

Ферма:

1.) найти такое m, для которого σ(m3) – квадрат натурального

числа (Ферма нашёл не одно решение этой задачи);

2.) найти такое m, для которого σ(m2) – куб натурального числа.

Например, одним из решений первой задачи является m = 7, а для второй m = 43098.

С помощью программы Derive, я попробовал найти ещё решения и у меня этого не

получилось. (я рассматривал σ(m3) = n2, где m

принимает значения от 1 до 1000, а n от 1 до 5000 в 1.) и тоже самое в 2.) )

Формулы:

1. DELITELI(m) := SELECT(MOD(m, n) = 0, n, 1, m)

DIMENSION(DELITELI(m))

2. SUMMADELITELEY(m) := Σ

ELEMENT(DELITELI(m), i)

i=1

Страницы: 1, 2


© 2010
Частичное или полное использование материалов
запрещено.