РУБРИКИ |
Реферат: Векторы. Действия над векторами |
РЕКОМЕНДУЕМ |
|
Реферат: Векторы. Действия над векторамивектором ортонормированного базиса на плоскости угол φ, тогда . Пример: Пусть вектор единичной длины образует с векторами , и ортонормированного базиса в пространстве углы α, β, γ, соответственно (рис.11), тогда . Причем . Величины cosα, cosβ, cosγ называются направляющими косинусами вектора Глава 6. Скалярное произведение Определение: Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Если один из векторов нулевой скалярное произведение считается равным нулю. Скалярное произведение векторов и обозначается через [или ; или ]. Если φ - угол между векторами и , то . Скалярное произведение обладает следующими свойствами: 1. (коммутативность). 2. (скалярный квадрат вектора равен квадрату его длины). 3. Скалярное произведение равно нулю тогда и только тогда, когда сомножители ортогональны или хотя бы один из них нулевой. 4. . 5. . 6. . Теорема: В ортогональном базисе компоненты любого вектора находятся по формулам: ; ; . Действительно, пусть , причем каждое слагаемое коллинеарно соответствующему базисному вектору. Из теоремы второго раздела следует, что , где выбирается знак плюс или минус в зависимости от того, одинаково или противоположно направлены векторы , и . Но, , где φ - угол между векторами , и . Итак, . Аналогично вычисляются и остальные компоненты. Скалярное произведение используется для решения следующих основных задач: 1. ; 2. ; 3. . Пусть в некотором базисе заданы векторы и тогда, пользуясь свойствами скалярного произведения, можно записать:
Величины называются метрическими коэффициентами данного базиса. Следовательно . Теорема: В ортонормированном базисе ; ; ; . Замечание: Все рассуждения этого раздела приведены для случая расположения векторов в пространстве. Случай расположения векторов на плоскости получается изъятием лишних компонент. Автор предлагает сделать вам это самостоятельно. Глава 7. Векторное произведение
Упорядоченная тройка некомпланарных векторов называется правоориентированной (правой), если после приложения к общему началу из конца третьего вектора кратчайший поворот от первого вектора ко второму виден против часовой стрелки. В противном случае упорядоченная тройка некомпланарных векторов называется левоориентированной ( левой). Определение: Векторным произведением вектора на вектор называется вектор , удовлетворяющий условиям: 1. где φ – угол между векторами и ; 2. вектор ортогонален вектору , вектор ортогонален вектору ; 3. упорядоченная тройка векторов является правой. Если один из векторов нулевой, то векторное произведение есть нулевой вектор. Векторное произведение вектора на вектор обозначается {либо }. Теорема: Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения. Теорема: Длина (модуль) векторного произведения двух векторов равняется площади параллелограмма, построенного на этих векторах как на сторонах. Пример: Если – правый ортонормированный базис, то , , . Пример: Если – левый ортонормированный базис, то , , .
Пример: Пусть, а ортогонален к . Тогда получается из вектора поворотом вокруг вектора на по часовой стрелке (если смотреть из конца вектора ). Пример: Если дан вектор , то каждый вектор можно представить в виде суммы , где – ортогонален , а – коллинеарен . Легко видеть, что . Действительно, можно заметить, что . Вектор компланарен векторам и , а потому и коллинеарны. Легко видеть (рис. 12), что они одинаково направлены. Векторное произведение обладает следующими свойствами: 1. (антикоммутативность); Действительно, из определения следует, что модуль векторного произведения не зависит от порядка сомножителей. Точно так же вектор коллинеарен вектору . Однако, переставляя сомножители, мы должны изменить направление произведения, чтобы было выполнено условие 3) определения. Действительно, если , , - правая тройка, то , , - левая, а , , - снова правая тройка. 2. ; Если φ - угол между векторами и , то . Векторы, стоящие в обеих частях доказываемого равенства, лежат на прямой, перпендикулярной и . При λ > 0 и вектор и вектор направлены так же, как . Если λ < 0, то кратчайший поворот от к производится навстречу кратчайшему повороту от к . Поэтому и противоположно направлены. Очевидно, что противоположно направлены также и векторы и . Таким образом, при λ ≠ 0 векторы и направлены всегда одинаково, и равенство доказано. При λ = 0 равенство очевидно. 3. ; Если , то доказываемое очевидно. Если , то разложим и в суммы и , где и ортогональны , а и коллинеарны . Поскольку , и вектор ортогонален , а коллинеарен , нам достаточно доказать равенство и (в силу свойства 2) даже равенство , где . Длина вектора равна 1. Выше, в примере, мы видели, что в этом случае умножение на сводится к повороту (ортогонального к ) первого сомножителя на угол 90°. Но при повороте параллелограмм, построенный на и , поворачивается целиком вместе с диагональю. Тем самым равенство доказано. 4. . Пусть в некотором базисе заданы векторы и тогда
или
Теорема: В ортонормированном базисе
или
{если базис левый, то перед одной из частей каждого равенства следует поставить знак минус}. Справедливость теоремы следует из предыдущих формул при учете примеров в начале раздела. Чтобы избежать постоянных замечаний об ориентации базиса, мы будем считать, что базис выбирается всегда правый. Векторное произведение используется в основном для решения двух задач: 1. Нахождения вектора перпендикулярного плоскости, в которой расположены два заданных вектора. 2. Вычисление площади S параллелограмма, построенного на векторах и , как на сторонах. В ортонормированном базисе . В планиметрии векторное произведение не определено. Но ничто не мешает считать, что изучаемая плоскость помещена в пространство и третий базисный вектор выбран единичным и перпендикулярным плоскости. Тогда векторное произведение имеет одну ненулевую компоненту, а именно третью, и площадь параллелограмма в ортонормированном базисе на плоскости выражается формулой . Глава 8. Смешанное произведение Определение: число называется смешанным произведением векторов , и . Смешанное произведение векторов , и обозначается или . Теорема: Смешанное произведение трех векторов равно объему параллелепипеда, построенного на векторах как на ребрах, взятому со знаком плюс если тройка правая, и со знаком минус, если тройка левая. Действительно, , где φ - угол между векторами и , а θ - угол между векторами и . Объем параллелепипеда, построенного на векторах , и , равен (рис. 13) произведению площади основания на высоту . Таким образом, первое утверждение доказано. Знак смешанного произведения совпадает со знаком cosθ, и поэтому смешанное произведение положительно когда направлен в ту же сторону от плоскости векторов и , что и вектор , т. е. когда тройка , , правая. Аналогично доказывается, что смешанное произведение левой тройки векторов отрицательно. Пример: Если - ортонормированный базис, то или , смотря по тому, правый это базис или левый. Теорема: Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения. Равенство возможно в следующих случаях: a.хотя бы один вектор нулевой; тогда все три вектоpaкомпланарны; b.sinφ = 0 тогда и коллинеарны, и следовательно , и компланарны; c.cosθ = 0 тогда вектор ортогонален , т. е. компланарен и . Обратное утверждение доказывается аналогично. Смешанное произведение обладает следующими свойствами: 1. ; 2. ; 3. . Пусть в некотором базисе векторы , , , тогда
или
В частности, в ортонормированном базисе
{если базис левый, то перед одной из частей равенства следует поставить знак минус}. Следствие: Условие
является необходимым и достаточным условием компланарности трех векторов, заданных своими координатами в некотором базисе Глава 9. Двойное векторное произведение Определение: Вектор называется двойным векторным произведением векторов , и . Теорема: Для любых векторов , и справедлива формула . Литература
Действительно, этим числом является или , или в зависимости от того, направлены ли векторы и одинаково или противоположно. Если , то λ = 0. Единственность множителя λ очевидна: при умножении на разные числа мы получим различные векторы. Страницы: 1, 2 |
|
© 2010 |
|