РУБРИКИ

Анализ методов улучшения жидкостекольных смесей

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

Анализ методов улучшения жидкостекольных смесей

Анализ методов улучшения жидкостекольных смесей



Содержание


cтр.

    Введение

4

1. Улучшение выбиваемости жидкостекольных смесей

8

1.1. Состояние вопроса

9

1.2. Определение выбиваемости

12

1.3. Изменение работы выбивки смеси  в зависимости  от температу-

       ры  нагрева

14

1.4. Влияние неорганических добавок:

23

1.4.1. Глины

24

1.4.2. Шамота

25

1.4.3. Боксита

26

1.4.4. Мела

28

1.4.5. Окиси магния

28

1.4.6. Доменного шлака

30

1.4.7. Фосфорита

31

1.5.Влияние органических добавок

31

1.6.Влияние «хрупкой» усадки

33

1.7.Влияние ускоренного охлаждения

34

1.8.Влияние количества жидкого стекла

35

1.9.Влияние модуля жидкого стекла

36

2. Улучшение выбиваемости жидкостекольных НСС

37

2.1.Изменение прочности жидкостекольных наливных   самотвердею-        щих смесей (НСС) в зависимости от      температуры    нагрева

38

2.2.Влияние усадки отливки  на выбиваемость жидкостекольных НСС

41

2.3.Влияние  неорганических  добавок  на  выбиваемость

      жидкостекольных НСС

41

2.4.Влияние  органических добавок на  выбиваемость

      жидкостекольных НСС

43

3. Выбиваемость ЖСС с жидкими отвердителями

50

3. 1.Выбиваемость ЖСС с ацетатом этиленгликоля

51

3. 2.Выбиваемость ЖСС с жидким кремнийорганическим

       отвердителем

55

    Выводы

59

    Список использованной литературы

61



1.Введение


   Жидкостекольные смеси начали применять в литейных цехах с 50-х годов и за короткий период времени они по­лучили широкое распространение в нашей стране и за рубежом, чему способствовала универсальность смесей, т. е. примени­мость одних и тех же составов для изготовления форм и стержней, использование их при производстве отливок из стали, чугуна и цветных сплавов.      Универсальность смесей выразилась также в их применимости при единичном, мел­косерийном, серийном и массовом производствах отливок.

  Вначале жидкостекольные смеси упрочнялись кратковре­менной тепловой сушкой или за счет продувки СО . Эти смеси имели повышенное содержание жидкого стекла (ЖС), вследствие чего выбиваемость форм и стержней по сравнению с выбиваемостью песчано-глинистых и других сме­сей резко ухудшилась, что послужило одной из причин вы­теснения с 70-х годов жидкостекольных смесей смесями с синтетическими смолами. Такая замена при отсутствии ав­томатизированных технологических циклов привела к ухуд­шению санитарно-гигиенических условий труда в литейных цехах и нерациональному использованию материальных ре­сурсов — смол, необходимых в других отраслях народного хозяйства.

   Работами, выполненными в нашей стране и за рубежом, показана возможность повышения связующей способности ЖС и на этой основе разработаны новые виды смесей с по­ниженным содержанием его. Отличительной   особенностью жидкостекольных смесей нового поколения является низкое содержание связующего, что в значительной мере устраняет недостаток традиционных смесей—затрудненную выбивае­мость из отливок и облегчает их регенерацию. Продолжающиеся ис­следования в этом направлении подчеркивают актуальность проблемы и неисчерпаемые возможности дальнейшего по­вышения технологических свойств жидкостекольных смесей.

Из жидкостекольных смесей, упрочняющихся в оснастке, наибольший интерес представляют смеси, отверждаемые с помощью СО, что обусловлено их высокой живучестью и скоростью упрочнения, нетоксичностью, простотой приго­товления и применения смеси, универсальностью. Однако существенное улучшение выбиваемости жидкоподвижных и пластичных жидкостекольных холоднотвердеющих смесей, разработанных в нашей стране в середине 60-х годов, спо­собствовало сокращению области применения смесей, от­верждаемых с помощью СО.

   Исследования, проведенные в последние годы, свидетель­ствуют о возможности снижения расхода ЖС в смесях, от­верждаемых СО, за счет ввода добавок в ЖС или в авто­клавы при варке силкат-глыбы, т. е. путем модифицирова­ния связующего. Эффективными модификаторами ЖС явля­ются основные фосфатные соли натрия, например, триполифосфат натрия, полифосфаты натрия, триэтилфосфат  и др.

   Модифицирование ЖС с помощью фосфатов позволяет уменьшить содержание его в смеси при одновременном уве­личении прочности, уменьшении осыпаемости и снижении работы выбивки смеси. Последнее объясняется возгонкой ок­сидов фосфора в диапазоне температур 400...780 °С, нару­шающей сплошность силикатных пленок и образованием ту­гоплавких силикофосфатов, предотвращающих спекание сме­си. Полифосфаты натрия являются универсальными модифи­каторами ЖС и их влияние на исходную и остаточную прочность жидкостекольных   смесей, отверждаемых СО и феррохромовым шлаком, аналогично.

   Эффективными модификаторами ЖС являются поверх­ностно-активные вещества (ПАВ), способствующие по­вышению когезионной прочности связующего, равномерному распределению на зернах наполнителя и более полному его отверждению. Применение ЖС, модифицированного ПАВ, позволяет уменьшить расход связующего в смеси и в 1,5— 2 раза улучшить выбиваемость смеси из отливок. В каче­стве ПАВ используют полиакриламид, ДС-РАС, стеарат каль­ция, технический диспергатор НФ и др. Ввод в связующее диспергирующей добавки существенно изменяет пористую структуру геля за счет образования на глобулах защитного адсорбционного слоя, способствующего уменьшению внутренних напряжений, в пленках связующего, и, сле­довательно, повышению прочности смеси. Благодаря этому содержание ЖС может быть снижено до 2...3 масс. ч, при  прочности смеси. >1. MПa.

    Эффективными способами повышения связущей способно­сти ЖС являются, также обработка его в процессе моди­фицирования с помощью переменного электрического поля, приготовление ЖС «мокрым» способом с использованием. алюминиевой стружки, предварительная обработка ЖС СО, добавка к ЖС гексамстилентетрамина и др.

    В качестве добавок, улучшающих выбиваемость жидкостекольных смесей, предложена большая группа веществ, содержащих алюмосиликаты (отработанный   катализатор ИМ-2201).

   Приведенные сведения о путях повышения технологиче­ских свойств жидкостекольных смесей, отверждаемых СО, показывают перспективность расширения объемов их приме­нения.

    Улучшение выбиваемости жидкостекольных смесей достиг­нуто с помощью отверждаемых порошкообразных веществ (феррохромового шлака, нефелинового шлама и др.). Так, Челябинский политехнический институт рекомендует вво­дить в ЖС вещества с ненасыщенными связями, например сульфит натрия, Киевский политехнический институт — дис­пергированные фенолоформальдегидные смолы новолачного типа. Такие смеси относятся к легковыбиваемым и хорошо зарекомендовали себя при производстве отливок из алюмини­евых, медных и черных сплавов.

    Большой опыт работы за рубежом и меньший в нашей стране накоплен по пластичным жидкостекольным смесям, отверждаемым сложными эфирами. В качестве эфиров предпочтение отдается ацетатам этиленгликоля, поскольку их производство базируется на доступном сырье, невысокой стоимости, и смеси легко регенерируются. Ряд предприятий опробовали эфиры производства Польши и Болгарии и подтвердили целесообразность применения сложноэфирных отвердителей из класса ацетатов этиленгликоля.

    ВНИИлитмашем осуществлен перевод жидкостекольных сме­сей с эфиром в жидкоподвижное состояние за счет совмест­ного ввода ДС-РАС и синтамида-5. Применение комплекс­ного пенообразователя для смесей с жидким отвердителем, а также для смесей с феррохромовым шлаком повышает текучесть, живучесть и прочность смеси, поэтому содержа­ние ЖС уменьшается до 5 масс. ч.

    Заслуживают внимания работы НПО  «ЦНИИТмаш» по применению жидких кремнийорганических полимеров и ор­ганических мономеров, позволяющих сократить расход ЖС до 1...3 масс. ч.

Целью данной работы является  анализ литературных источников и выявление методов улучшения выбиваемости жидкостекольных смесей из отливок.




























1.Улучшение                                 выбиваемости  жидкостекольных смесей














1.1.Состояние вопроса

   Выбивка из отливок стержней, изготовленных из смесей с жид­ким стеклом, вызывает большие затруднения.

  В специальной литературе и в практике литейного производ­ства часто встречаются противоречивые мнения.

  На одних заводах стержни легко выбиваются из отливок, на других трудоемкость выбивки стержней после перехода из смеси с жидким стеклом возрастает; на третьих выбивка оказалась столь затрудненной, что создались серьезные осложнения в ис­пользовании современных механизированных средств удаления стержней — в первую очередь гидравлической выбивки. В целях преодоления возникших затруднений в нашей стране и за рубежом было проведено множество работ по улучшению выбивки стержней.

   Была проверена эффективность огромного количества разно­образных добавок органического и неорганического происхожде­ния[10].

   В нашей стране было проверено влияние на условия выбивки стерж­ней: древесного и каменного угля, кокса, черного и серебристого графитов, древесного пека, битума, нефтяных масел, патоки, декстрина, сульфитно-спиртовой барды, пульвербакелита, МСБ, древесной муки и опилок, глины, цемента, мела, извести, шамота, магнезита, фосфорита и других.

   Те же, а также и другие добавки (например, сахар, нафталин, железная окалина, патентованные добавки и пр.) проверялись в зарубежных работах.

   В большинстве случаев рекомендации сводились к введению в смеси небольшого количества органических добавок.

   В одних случаях введение этих добавок действительно было эффективным, а в других оказывалось бесполезным.

   Отсюда различными специалистами одни и те же добавки оце­ниваются иногда диаметрально противоположно. Как это пока­зано ниже, причина столь разноречивых суждений заключается в различных условиях работы стержней в форме. Уже простой перечень применявшихся добавок, совершенно различных по своей природе и свойствам, показывает, что упомянутые выше работы проводились главным образом эмпирически.

   Некоторые исследователи исходили из представлений о необ­ходимости вызвать разрушение прочной пленки жидкого стекла, цементирующей отдельные зерна кварцевого песка, при помощи разнообразных добавок главным образом органического проис­хождения.

   Эти опыты не дали решения проблемы, что, конечно, не исклю­чило возможности в отдельных случаях улучшения выбиваемости стержней из отливок. Позднее, когда исследователи и производ­ственники убедились, что достигнуть положительных результа­тов по облегчению выбиваемости можно, лишь внеся ясность в сложные процессы, которые протекают в смесях с жидким стек­лом при их заливке металлом, начали появляться систематические исследования по этому вопросу.

   Многие специалисты оценивали выбиваемость смеси по пределу прочности при сжатии образцов, подвергнутых нагреву до вы­соких температур, а затем охлажденных. В подавляющем боль­шинстве работ нет объяснений увеличению прочности образцов при их предварительном нагреве до одной температуры и умень­шению прочности при нагреве до другой.

   В тех случаях, когда объяснения даются, они носят противо­речивый характер, так как связываются с различными темпера­турами и не подтверждаются экспериментальными данными.

  Л. Петржела отмечает, что смеси, продутые CO, легче выби­ваются из отливок, чем смеси, подвергнутые тепловому высушиванию, вследствие меньшего содержания жидкого стекла и «в связи с уменьшением прочности гидрогеля под действием тем­пературы».

   В докладе на 24-м конгрессе литейщиков Л. Петржела привел другие соображения, указав, что решающее значение имеет химическая реакция между продуктами разложения ще­лочного силиката, т. е. реакция между гидратированной крем­невой кислотой и карбонатом натрия, или дальнейшая реакция образовавшегося силиката с кристаллическим кварцем:

SiOpНО + NаСО == Na SiO + СO+ рНО.

   В работе отмечается, что трудность выбивки опреде­ляется содержанием щелочей. Чем меньше Nа0, тем легче вы­бивка. Минимальную прочность имеют образцы, предварительно нагретые до 600—700° C, а максимальную при 100—200º C и 800—900° С.

   Л. Петржела считает, что образование стекловидной пленки является главной причиной спекания стержней и форм и ухудше­ния выбиваемости. Прочность стекловидной пленки можно умень­шить добавлением горючих порошкообразных веществ, например каменноугольной пыли, древесных опилок, молотого кокса, гра­фита и т. п. Добавление таких органических веществ как сахара, канифоли, смол и т. п. не приносит никакой пользы.

    Условиям выбиваемости стержней из отливок посвящены работы: Аттертона, Нилда и Эпштейна, Тэйлора, Бэмера, Шумахера, Герстманна, Ле Серва и Сегро и других.

    Во многих английских, американских и немецких работах рекомендуется введение сахара, который растворяется в жидком стекле, не вызывая его коагуляции.

   Указывается, что он нейтрализует щелочность силиката и тем самым обеспечивает смесям с жидким стеклом такую же выбивае­мость, как песчано-масляных смесей.

    Исследования других авторов приводят к противоположным выводам, в которых отмечается, что добавка сахара еще более затрудняет выбивку.

    Петржела, изучив жидкое стекло с патентованными добавками, сообщил, что оно содержит чаще всего растворенные углеводы (сахар) или синтетические смолы, которые снижают прочность после продувки CO, что вызывает необходимость увеличения в смеси жидкого стекла и тем самым ухудшает выбиваемость стержней из отливок. Он пришел к выводу, что так называемые специальные связующие вещества заграничного происхождения не имеют каких-либо преимуществ перед стандартными жидкими стеклами, и их рекомендации преследуют прежде всего коммер­ческие цели.

   Старр, рекомендуя введение в смеси сахара, в то же время пессимистически оценивает перспективы улучшения выбиваемости смесей с жидким стеклом, так как, по его мнению, создаются именно те условия, которые явились неразрешимой проблемой использования щелочных силикатов в литейном производстве.

   Систематические исследования общих закономерностей усло­вий выбиваемости смесей с жидким стеклом были проведены в нашей стране в лаборатории Старо-Краматорского машиностроительного завода, а за рубежом во французском техническом центре литей­ной индустрии.

    В результате исследований, проведенных на СКМЗ Г. А. Равичем и О. М. Алешечкиной, было установлено, что образцы из смесей кварцевого песка с жидким стеклом имеют два максимума прочности при предварительном нагреве до 200 и до 1000° С и два минимума — в интервале 500—800° C и выше 1250° С.

   Главная заслуга Г. А. Равича и О. М. Алешечкиной заклю­чается в том, что они на основании тщательно проведенной экспе­риментальной работы опровергли существовавшее мнение и до­казали, что выгорающие органические добавки не дают эффекта при нагреве стержней до высоких температур и что их введение может быть полезным лишь при нагреве стержней до температур, не превышающих 600—700° С.

  Декро и Гогюллон на основании определения прочности образцов на сжатие после их предварительного нагрева отмечают два максимума — при 500° C и при 900—1000° С. Соответственно минимальные прочности найдены ими при 700° C и выше 1000° С.

  Декро и Гогюллон пытаются объяснить обнаруженные ими и другими исследователями максимумы и минимумы, соответственно затрудняющие или облегчающие выбивку стержней из отливок. Первый максимум прочности после нагрева до 500° C они объяс­няют высыханием жидкого стекла и началом его спекания.        Минимум прочности при 700° C Декро и Гогюллон сначала  пытались  объяснить быстрым расширением кварца в этом интер­вале температур (переход α-кварца в β-кварц при 575° С), могу­щим вызвать образование трещин между зернами. Однако замена цирконовым песком, не имеющим модификационных изменений в этом интервале температур, дала тот же характер кривой. Также были отвергнуты гипотезы, объясняющие падение проч­ности при 700° C выделением CO из силиката и дегидратацией силикагеля. Поэтому Декро и Гогюллон остановились на пред­положении, что падение прочности при 700° C связано с превраще­ниями бисиликата натрия, кристаллическая форма которого изменяется при 678 и 707° C; при нагреве до этих температур, по их мнению, образуется неоднородная структура, лишенная свя­зующей способности.

   Второй максимум при 900—1000° C вызывается тем, что некарбонизированный крепитель становится жидким, начиная с 800° C, и взаимодействует с поверхностью зерен кварца.

   Вторым источником прочности является NaО, образующийся в результате разложения силиката углекислым газом. Освобо­ждающийся NaО взаимодействует с кремневой кислотой и обра­зует силикат.

   Понижение прочности образцов при температурах выше 1000° C Декро и Гогюллон объясняют переходом NaО из рас­плава силиката в зерна кварца, что способствует более быст­рому превращению кварца в кристобалит, но вызывает в то же время постепенное исчезновение связующего вещества между зернами.

   Это явление сопровождается у смесей кварцевого песка с жид­ким стеклом, нагретых до 1300° C, ясно выраженным прекраще­нием спекания, которое может вновь начаться в смесях, нагретых до более высоких температур (свыше 1500° С).

   По-видимому, эти соображения кажутся Декро и Гогюллону недостаточно убедительными, так как они приходят к выводу, что минимум прочности после предварительного нагрева образцов до 1000° C трудно объясним.

   Вышеприведенное показывает противоречия в эксперименталь­ных данных и мнениях различных авторов. Это свидетельствует о том, что в настоящее время еще недостаточно изучены общие закономерности физико-химических процессов, протекающих при нагреве и последующем охлаждении смесей с жидким стеклом. В частности, не предложены гарантийные меры, обеспечивающие легкую выбивку стержней из отливок.


1.2.        Определение выбиваемости

    Противоречия в экспериментальных данных, полученных различными исследователями, объясняются прежде всего несоблюдением постоянства условий экспериментов и не­совершенством применявшихся методов.

    Надо признать, что объективную оценку выбиваемости стерж­ней из отливок дать очень трудно, так как смеси при их разруше­нии подвергаются различным видам нагрузок. Пленки связую­щего материала испытывают при этом одновременное действие скалывающих, изгибающих и растягивающих усилий. Если с этой позиции рассмотреть наиболее распространенные методы выбивки стержней, то общим для них является ударное воздействие на стержень.

   Многие исследователи определяли выбиваемость смесей по прочности стандартных образцов на сжатие, что не может харак­теризовать способность к разрушению под действием ударной нагрузки, хотя определенная зависимость между прочностью на сжатие и выбиваемостью, по-видимому, существует.

   С другой стороны, использование для определения выбивае­мости стержней встряхивающих выбивных решеток, вибрационных машин, пневматических зубил и других аналогичных приспособ­лений неизбежно вносит существенный элемент субъективности, так как трудно определить момент конца выбивки: образование пригарной корки различной толщины значительно затрудняет оценку собственно выбиваемости смесей.

   Наконец, эти методы применяют обычно при изготовлении какой-либо одной, специально выбранной опытной отливки.

   Поэтому полученные результаты могут быть использованы лишь как сравнительные применительно к данным или подобным отливкам и не могут быть перенесены без существенных поправок на другие отливки. Очевидно, разнообразие конфигураций, веса, типа сплава отливок и, соответственно, условий прогрева стержней настолько велико, что практически невозможно найти такую форму и размеры опытной отливки, чтобы полученные законо­мерности могли быть перенесены на большую номенклатуру литья.

   Поэтому, прежде всего, было обращено внимание на выбор ме­тодики исследований, лишенной упомянутых основных недо­статков. В основу методики[11,13] была положена оценка смесей по наиболее близкому к производственным условиям показателю — работе, затрачиваемой на выбивку («пробивку») образцов, предва­рительно нагретых до различных, заданных условиями опыта, температур.

   Для этого применялся копер, снабженный специальными при­способлениями (рис. 1).

Рис. 1. Приспособления для оценки выбиваемости смесей:

а — исследуемый образец; б — металлическая гильза; в — поддон;

г — боек.

   На нижнем конце вертикального штока копра укреплялся боек диаметром 20 мм. При изготовлении бойка его острие дела­лось тупым, чтобы при длительном использовании сохранить стабильными размеры бойка. Для того чтобы обеспечить возмож­ность выхода разрушенной смеси из-под бойка, последний имел три продольных паза шириной 5 мм, расположенных по окруж­ности под углом 120°. Приспособление для определения работы выбиваемости имело комплект съемных грузов и кулачков, обес­печивающих возможность изменения высоты падения грузов. Таким образом, изменением веса падающего груза и высоты паде­ния последнего достаточно быстро и точно определяли работу, затрачиваемую на выбивку как очень слабых, так и прочных стержневых смесей.

  Образцы высотой 30 мм и диаметром 50 мм, уплотненные тремя ударами на обычном копре, высушивались при 200° C в течение 20 мин или продувались углекислым газом в течение 45 сек. Затем они подвергались нагреву до различных заданных температур от 200 до 1400° C с интервалом 100—200° C, выдержи­вались при этой температуре в течение 40 мин и медленно охла­ждались в печи со скоростью 200—300°/ч.

   Полученные образцы а (рис. 1) плотно, без зазора, встав­лялись в металлическую гильзу б, которая, в свою очередь, устанавливалась на поддон в.  В дне поддона имелось отверстие диаметром 22 мм для свободного выхода бойка г, пробивающего образец а,

   Работа, затраченная на выбивку («пробивку» образца), на­ходилась из следующей зависимости:

A = nGh

где A работа, затраченная на пробивку опытного образца, в кГм;

n число ударов бойка, необходимых для пробивки образца;

G вес падающего груза в кг;

h — высота падения груза в м.


1.3.Изменение работы выбивки смеси в зависимости от температуры нагрева


 По описанной методике образцы смесей при их нагреве и охла­ждении не испытывают сжимающих усилий, возникающих в стерж­нях при усадке отливок.

   Поэтому в работе параллельно с испытанием образ­цов, подвергавшихся нагреву в печах, определяли выбиваемости смесей на опытных отливках плиты длиной 650 мм, шириной 200 мм и высотой 50 мм, в которую одновременно устанавливали четыре стержня из испытуемой смеси. В результате контрольных опытов были выбраны диаметры стержней с таким расчетом, чтобы отношение толщины стенки отливки к радиусу стержня составляло 0,5; 1,0; 2,0 и 4.0.

  Опытные отливки весом 150 кг зали­вались при температуре 1550— 1580° C   сталью 30Л. Температура нагрева стержней при разных соот­ношениях толщин стенок отливок к радиусам стер­ней приведена на рис. 2. Работа, затрачиваемая на выбивку стержней из от­ливок, определялась пос­ле полного их остывания с помощью переносного копра, аналогичного описанному выше.

    Так как пленки склеивающие зерна напол­нителя в случае продува­ния смесей углекислым газом  и  в  случае удаления влаги при нагреве отличаются,  то 

поэтому при изучении общих закономерностей условий выбивки стержней опыты проводились с образцами, продутыми углекис­лым газом в течение 45 сек, и с образцами, высушенными при 200º C в течение 20 мин. Смесь содержала кварцевый песок Люберецкого месторождения (1К025А)—100 весовых частей; жидкое стекло (модуль 2,7, удельный вес 1,48 г/см3)— 5 весо­вых частей; NaOH (10 %-ный раствор)—1 весовая часть.

   Была установлена непосредственная зависимость работы A, затрачиваемой на выбивку образцов, от температуры их предва­рительного нагрева (рис. 3).

   Как видно из этой зависимости, кривая, характеризующая работу выбивки A, имеет два максимума и два минимума.

   Первый максимум соответствует исходному состоянию образ­цов, нагретых до 200º C и охлажденных, а также продутых CO. При последующем нагреве и охлаждении образцов работа, за­трачиваемая на их выбивку, непрерывно падает, достигая мини­мальных значений («первый минимум») в интервале 400—600° С.

   Нагрев до более высоких температур вызывает новый значи­тельный рост работы, затрачиваемой на выбивку, которая дости­гает максимальных значений при 800° C («второй максимум»).

   Из приведенных на   рис. 3 зависимостей видно также, что работа, затрачиваемая   на выбивку образцов, продутых CO, при всех температурах их пред­варительного нагрева оказа­лась ниже работы, затраченной на выбивку высушенных образ­цов.

    Однако, если при первом максимуме  работы  разница весьма существенна, то при втором максимуме эта разница значительно уменьшается, а при обоих минимумах величина A практически одинакова. Это сви­детельствует о том, что при на­греве до высоких температур и охлаждении опытных образ­цов в смеси происходят одина­ковые или подобные процессы. На этом явлении подробно остановимся.

    Наличие минимума работы, затрачиваемой на выбивку образ­цов, предварительно нагретых до температур, лежащих в интер­вале 400—600° C, приводит к мысли о возможности создания в стержнях условий, при которых связь между отдельными зернами наполнителя нарушалась бы после заполнения литейной формы жидким металлом и образования на отливке твердой корки и не восстанавливалась бы в процессе последующего охлаждения стержней. Для достижения этой цели могут быть использованы два пути.

  Первый заключается в регулировании степени прогрева стержней с использованием для этого различных теплопровод­ных и теплоизоляционных смесей; второй — в значительном расширении благоприятного для выбивки интервала температур.

   На практике приходится сталкиваться с очень большим диа­пазоном температур прогрева стержней — от минимальной в центре до максимальной (близкой к температуре заливаемого металла) — на поверхности. Однако для успешной выбивки стержня часто оказывается достаточно иметь легкую выбиваемость его основного объема, тогда наружная часть, соприкасающаяся с отливкой, довольно легко может быть удалена. Об этом свидетельствует, например, опыт применения оболочковых стержней из смеси с жидким стеклом, как правило не вызывающих затруднений при выбивке из отливок.

   Была проверена возможность регулирования степени прогрева стержней с помощью материалов с различными теплофизическими свойствами. Однако введение в смеси с жидким стеклом 20% чугунной стружки  , 10% окалины, применение в качестве наполнителя хромомагнезита  и других  высокотеплопроводных материалов, введение в смеси

Рис.4.   Влияние толщины стенки отливки на условия нагрева стержней из смесей с жидким стеклом:

 1— хромомагнезитовой; 2 — кварцевого песка и 10% асбеста;

 3 — кварцевого песка и 20% чугунной стружки.

материалов (асбеста), тормозящих отвод тепла, не позволило существенно изменить температуру в центре стержней (рис. 4).

   Для решения второй задачи необходимо было установить причины, определяющие зависимость работы, затрачиваемой на выбивку стержней, от температуры их предварительного нагрева.

   Существенное различие работы, затраченной на выбивку высушенных образцов (рис. 3) в области первого максимума (исходное состояние), объясняется разли­чием природы пленок, связывающих зерна кварцевого песка. Небольшое увеличение прочности образцов, продутых углекислым газом и нагретых до 200° C, закономерно и объясняется краткой продолжительностью (45 сек) продувки образцов углекислым газом.

   При последующем нагреве образцов до температур 400–600° C наблюдается значительное уменьшение работы, затрачивае­мой на выбивку образцов.

   Важно отметить, что величина работы в этом интервале тем­ператур является минимальной и практически одинаковой как для образцов, предварительно высушенных, так и для образцов продутых CO. Пленка жидкого стекла обладает чрезвычайно высокой адгезией к кварцевым зернам. Это особенно сильно проявляется в условиях высоких температур, когда происходит химическое взаимодействие между щелочным силикатом натрия и поверхностью кварцевых зерен.

  Учитывая когезионный тип разрушения смесей с жидким стеклом, изменение прочностных свойств смесей в условиях их нагрева и последующего охлаждения можно объяснить измене­ниями, происходящими в пленке жидкого стекла.

   Вследствие различных температурных коэффициентов объем­ного и линейного расширения стекловидного силиката натрия и кварцевого песка при повторном нагреве и охлаждении высушен­ных образцов в пленке, склеившей зерна наполнителя, возникают напряжения, приводящие к образованию трещин, нарушающих её сплошность и снижающих прочность образцов на удар.

   При нагреве образцов до 600° C и последующем охлаждении к напряжениям, возникающим вследствие различия температур­ных коэффициентов расширения пленки и зерна, добавляются напряжения, возникающие в результате модификации изменений кварца (переход α-кварца в β-кварц при 575° С).

   Снижение величины A и образование первого минимума объясняется также полной потерей влаги гелем кремневой кислоты и дисиликатом натрия в интервале температур примерно до 350–400° С.

   Эти данные подтверждаются термограммами высушенных при: 200° C и продутых углекислым газом смесей, содержащих 6% жидкого стекла.

   Здесь, однако, имеется в виду влияние не собственно потери влаги, а воздействия этого процесса на возникновение в пленке, связывающей зерна кварца, напряжении, приводящих к обра­зованию в ней трещин, резко снижающих общую прочность смеси.

   Наконец, следует учесть, что напряжения в пленках будут тем выше, чем больше будет перепад между температурой нагрева и температурой последующего охлаждения. Влияние этих фак­торов на условия выбивки стержней и подтверждение превали­рующего значения напряжений, возникающих в пленках и при­водящих к падению величины A, находим экспериментально. Полученные данные (рис. 5) ясно показывают, что при повторном нагреве и охлаждении прочность образцов резко падает.

    Очевидно, что стекловидная пленка, содержащая в основном гидратированный   дисиликат натрия, будет значительно более хрупкой, чем пленка, состоя­щая в основном из геля крем­невой   кислоты.  Последняя, особенно в начальных условиях, будет обладать эластичностью и способностью частично релаксировать возникающие  нап­ряжения. Поэтому прочность предварительно высушенных об­разцов при повторном нагреве и охлаждении падает гораздо более резко, чем у образцов, предварительно продутых угле­кислым газом.

   Таким образом, в случае высушенных и в случае проду­тых CO образцов при их наг­реве до 400–600° C и последую­щем охлаждении в результате возникающих напряжений, при­водящих к образованию в плен­ках трещин, работа, затрачивае­мая на выбивку, оказывается минимальной.

    Переходя к рассмотрению одного из главных вопросов – причин образования второго максимума, прежде всего следует отметить чрезвычайно быстрое увеличение работы, затрачиваемой на выбивку образцов, предварительно нагретых до 800° С. Столь резкое возрастание прочности при нагреве образцов до 800° С свидетельствует о том, что примерно при этой температуре про­исходит коренное изменение условий склеивания кварцевых зёрен наполнителя.

Причина образования второго максимума становится очевид­ной из рассмотрения двойной диаграммы состояния NaO – SiO (рис.6)                                  

   При нагреве жидкого стекла, обычно применяемых модулей, жидкая фаза начинает появляться при температуре 795° C, а при нагреве до 850° C (для модуля, равного 2,5) образуется полностью жидкий расплав.

  Образовавшаяся жидкая фаза силикатного расплава обволакивает зерна кварцевого песка, «залечивает» появившиеся ранее трещины и при последующем охлаждении сооб­щает смеси высокую прочность, что приводит к значительному увеличению работы, затрачиваемой на выбивку смесей. Этот процесс происходит как в высушенных, так и продутых CO образцах. Однако, если в высушенных смесях происходит простое расплавление уже ранее образовавшегося силиката натрия, то в смесях продутых CO образуется расплав из самостоятельно существующих компонентов — главным образом NaHCO и SiO, получившихся в результате разложения жидкого стекла при про­дувании смеси углекислым газом. Это, по-видимому, является причиной меньшей величины второго максимума в образцах, продутых CO,  так как условия образования расплава из отдель­ных составляющих в тонкой пленке связующего не могут считаться благоприятными. Подтверждением такого предположения яв­ляются опыты (рис. 7), проведенные при заливке стержней сталью 30Л. Они подтвердили общую



Рис. 6. Диаграмма состояния системы NaO – SiO.

закономерность — ярко выраженный максимум работы, затраченной на выбивку стерж­ней, прогретых до температуры примерно 800°С.

Рис. 7.Работа,  затраченная   на выбивку  из отливок стержней:

    1—высушенных при 200° C;

    2 — продутых CO.

 Вследствие значитель­ного воздействия на стер­жень тепла залитого ме­талла, малой теплопровод­ности смеси и очень мед­ленного охлаждения стер­жней процессы образова­ния жидкой фазы в плен­ках связующего материала в данном случае протекают более полно, чем при испы­таниях образцов. Поэтому в смесях, продутых CO, при этом полностью осуще­ствляется процесс образо­вания жидкой фазы, вслед­ствие чего наблюдается почти одинаковый ход кри­вых, характеризующих работу, затраченную на выбивку стер­жней, высушенных и продутых CO.

  Таким образом, при нагреве смесей до 800°C образуется жид­кий расплав, который энергично взаимодействует с кварцевым песком, растворяя последний, в результате чего четко выражен­ная граница раздела пленки и зерна стирается и образуется сплошной монолит, обладающий большой прочностью. В этих условиях появляется «второй максимум», резко затрудняющий выбивку стержней из отливок.

   Рассмотрим причины снижения величины A при нагреве смесей до более высоких температур и условия образования «второго минимума».

   При нагреве смесей до температур, превышающих 800° C, взаимодействие силикатного расплава с кремнеземом песка усили­вается. Как известно, скорость диффузии возрастает по мере по­вышения температуры и уменьшения вязкости среды. Поэтому при высоких температурах диффузия SiO от поверхности растворения в расплав значительно возрастает и в целом процесс растворения кремнезема в силикатном расплаве ускоряется. В результате растворения содержание SiO   в расплаве непрерывно увеличи­вается вплоть до предела растворимости при данной температуре согласно диаграмме состояния NaO–SiO. После достижения предела растворимости этот процесс прекращается.

    При охлаждении образца из образовавшегося расплава начи­нают выпадать избыточные кристаллы сначала тридимита, а при температурах ниже 870° C — кварца. Выпавшие твердые кри­сталлы в затвердевшем расплаве играют роль инородных включе­ний — надрезов, нарушающих сплошность пленок и концентри­рующих напряжения, возникающие при охлаждении образца до комнатной температуры.

   Наконец, следует учесть, что чем энергичнее идет процесс растворения SiO в расплаве, тем меньше становится относитель­ное содержание в нем  NaO.

   Эти факторы являются основной причиной уменьшения работы, затрачиваемой на выбивку образцов при их предварительном нагреве до температур, превышающих 800° С. Естественно, что чем выше температура нагрева расплава, тем быстрее проис­ходит растворение кремнезема и тем больше растворимость в рас­плаве. Следовательно, при охлаждении с более высоких тем­ператур расплав будет содержать относительно большее коли­чество твердых инородных включений и сплошность силикатной пленки будет в большей степени нарушена, что будет приводить к дальнейшему уменьшению величины А.

    Таким образом, после полного охлаждения пленка, склеившая зерна кварцевого песка, будет иметь не первоначальный состав, соответствующий, например, точке a на диаграмме состояния (рис. 6), а состав, в зависимости от температуры нагрева соот­ветствующий, например, точкам б, в или г. С другой стороны, если образцы, один раз нагретые до 1200° C (точка б), вновь на­гревать до 800, 1000 и 1200° C, то состав пленки останется неиз­менным. Следовательно, работа, затрачиваемая на выбивку вто­рично нагреваемых образцов, будет примерно одинаковой при всех температурах вплоть до 1200° C. Однако величина A должна быть ниже, чем при первом нагреве до 1200° C, так как при вто­ричных нагреве и охлаждении увеличиваются напряжения за счет модифицированных изменений кварца и возникающих тер­мических напряжений. Подтверждение находим в опытах, приве­денных на рис. 8.

    Справедливость последней гипотезы подтверждается также опытами, при которых в качестве наполнителя вместо кварце­вого песка был взят цирконовый. В этом случае не только не было обнаружено уменьшения прочности после достижения темпера­туры второго максимума, но, наоборот, при нагреве до более высоких температур (1400° С) прочность непрерывно возрастала.

    Рис. 8.  Работа, затра­ченная на 

    выбивку         образ­цов из

    смеси на жидком стекле:

     1 — предварительно высу­шенных

     при 200° C;

2 — предварительно  прокаленных           при 120° С.

 

   Одним из главных вопросов, имеющих   основное      значение для     практического улучшения  выбиваемости  смесей, является  максимальное     расширение интервала  первого минимума работы, затрачиваемой на выбивку стержней.

   Выбором более сложных, например тройных систем с определен­ным соотношением компонентов, можно получить необходимую заданную температуру образования второго максимума.

  Обратимся к диаграмме состояния системы NaO—AlO—SiO(рис. 9). Расчет по соответствующей изотерме диаграммы состояния (рис. 9) показывает, что для получения второго максимума при 1400° C в смесь, содержащую 5% жидкого стекла, модуля 2,7 (SiO—31,6%; NaO—12.0%), необходимо добавить 0,97% AlO.

Соответствующие опыты, проведенные с вве­дением в смесь, содержащую 5% жидкого стекла, дополнительно 3% химически чистого AlO,  количество  которого  по  срав-нению с расчетным было значительно  увеличено для более четкого выявления закономерности и ввиду возможного неполного усвое­ния 

глинозема, подтвердили изложенные представления.


  Рис. 9. Диаграмма состояния системы NaOAlOSiO.

Линия A—A соответствует сплавам, в которых модуль         жидкого   стекла равен 2.7.




    Из опытов (рис. 10) видно, что при добавке AlO второй максимум, в соответствии с расчетными данными, «передвинулся» с 800 до 1400° С. При этом интервал первого минимума увеличился с 400—600 до 600—1200° C. Кроме того, величина второго макси­мума при добавлении в смесь AlO также заметно уменьшилась, что объясняется появлением на зернах наполнителя инертного слоя, непрореагировавшего с силикатом натрия глинозема, зна­чительно снизившего адгезию пленок, а также, возможно, мень­шей прочностью алюмосиликатов натрия. Исходные свойства смеси при добавлении глинозема изменились незначительно. При содержании 5% жидкого стекла и 3% AlO смесь после продувки CO имела предел прочности при сжатии 11.0 кГ/см 2, что вполне удовлетворяет технологическим требованиям.

 

1.4.Влияние неорганических добавок

 

1.4.1.Влияние глины

    Одной из наиболее распространенных добавок, вводимых в формовочные смеси для улучшения выбиваемости, в том числе  в смеси с жидким стеклом, является глина. В проведенных опытах она содержала 27% AlO. Расчёт показывает, что для образования второго максимума при 1200º C в смесь необходимо ввести 3,0% глины (0,81% AlO); при дальнейшем увеличении  глины максимум  соответственно  будет  перемещаться  вправо и составлять 1300 и 1400º C.

   Как видно из диаграммы состояния, изменением модуля стекла и введением в смеси надлежащего количества AlO могут быть выбраны силикатные системы, обеспечивающие получение второго максисума при 1500, 1600º C и более высоких температурах.            

Рис.11.Работа, затраченная на выбивку образцов из смесей:

 а —без глины; б—3% глины; в — 5% глины; г — 9% глины.


   Результаты опытов показывают совпадение эксперименталь­ных данных с расчетными (рис. 11). Они подтверждают также целесообразность введения в смеси с жидким стеклом глины и дают удовлетворительное объяснение эффективности ее действия как средства, существенно облегчающего выбивку стержней из отливок.   Отметим, что при перемещении второго максимума вправо работа, затраченная на выбивку образцов, нагретых до температуры второго максимума, снижается в не­сколько раз (рис. 11). При значительном содержании в смесях глины (более 5%) хотя и резко облегчается выбивка стержней, однако исходная прочность оказывается низкой, что затрудняет практическое использование этих смесей.

  Для улучшения исходных свойств целесообразно заменить глину веществом, не способным вступать в ионогенное взаимодей­ствие с жидким стеклом и содержащим большое количество AlO.

1.4.2.Влияние шамота

   В качестве инертного к жидкому стеклу материала, богатого  AlO, был исследован шамот. Как и следовало ожидать, физико-механические свойства смеси при добавлении шамота не ухудши­лись (предел прочности на сжатие после продувки CO составлял 12—13 кГ/см2. Однако влияние шамота на температуру образования второго максимума не обнаруживалось (рис. 12) — второй мак­симум образовался при 800º С, т. е. при той же температуре, что и в смесях без добавок. Объясняется это, по-видимому, тем, что муллит (3AlO•2SiO) —основная составляющая шамота — инертен к расплаву жидкого стекла и не дает с последним тройных соединений.

    При высоких температурах муллит очень устойчив и не подвер­гается разложению даже вблизи температуры плавления (1810° С).






    При температуре 500—600° C из глины удаляется практически вся влага, в том числе и кристаллизационная, в то же время процесс муллитизации при этих температурах еще не начинается и химическая активность глинозема сохраняется, что должно способствовать смещению второго максимума в область более высоких температур. Действительно, из рис. 12, б  видно, что смесь с добавкой 5% глины, прокаленной при 600° C, дает второй максимум прочности при 1200° C, т. е. там же, где и смесь с добав­кой необожженной глины. Напротив, в глине, прокаленной при 1300° C, процесс муллитизации прошел практически полностью, поэтому ее добавление в смеси не изменило температуру образова­ния второго максимума (рис. 12, б), так же как это имело место при добавлении шамота (рис. 12, а).

1.4.3.Влияние боксита

  Опыты И. В. Валисовского и А. М. Лясса показали, что для снижения величины работы, затрачиваемой на выбивку стержней, необходимо применять ма­териалы, содержащие AlO, способные образовывать тройные соединения с NaO и SiO.    Одним из таких материалов, содержа­щих значительно большее количество AlO, чем глина, является боксит, в состав которого входят гидраргиллит Al(OH), бёмит AlOOH, диаспор HAlO. Все эти материалы при нагреве разлагаются с образованием активного γ AlO.

   Наиболее известными в России являются Краснооктябрьское, Североуральское и Тихвинское месторождение бокси­тов (табл. 1).

Таблица 1

Химический состав бокситов

Месторо- ждение

боксита

 

Содержание компонентов в %

 

Потери при про -   каливани

в %

AlO

 

SiO

 

FeO

CaO

 

 

 

Страницы: 1, 2


© 2010
Частичное или полное использование материалов
запрещено.