РУБРИКИ

Синтез содержательных и формализованных описаний в дидактике физики

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

Синтез содержательных и формализованных описаний в дидактике физики

Синтез содержательных и формализованных описаний в дидактике физики

Синтез содержательных и формализованных описаний в дидактике физики

И.А. Иродова, Я.Д. Лебедев

Наши представления о реальности в дидактике физики формируются на основе наблюдений. Но возможности непосредственного наблюдения во многих случаях ограничены, и поэтому недостающую информацию восполняют описания естественными и искусственными языками. Содержательные описания дидактики физики используют естественные языки и позволяют получать феноменологические описания её предметной области. Они основываются на использовании нестрогих понятий, которые характеризуются неопределённостью, многозначностью.

Формализованные описания, отсутствующие в дидактике физики, строятся на основе общих принципов, законов, аксиом, постулатов и позволяют устанавливать существенные связи и отношения между фактами и явлениями, что сопровождается сжатием информации. В таких описаниях объяснение осуществляется на основе подведения частного под общее, что позволяет прогнозировать события. Такие описания отличаются значительной степенью общности и абстрактности, строгостью используемых понятий, определённостью высказываний, большей однозначностью суждений. Поэтому формализованные описания могут являться не только основой для создания моделей в предметной области дидактики физики, но и позволяют под новым углом зрения видеть скрытые стороны изучаемых объектов.

Как подступиться к решению проблемы синтеза содержательных и формализованных описаний в дидактике? В поисках ответа на вопрос будем исходить из следующих положений: для формализации знаний дидактики необходимо использовать законы формализованной системы; процесс синтеза содержательного и формализованного описаний следует вести последовательно, приближая содержательное описание к формализованному и наоборот, что не противоречит исследованиям работы [1].

Несмотря на то, что формализованные системы по степени их общности и абстрактности разнообразны, в основе их описаний лежит понятие множества − базовое математическое понятие. Оно не определяется через более простые понятия и задаётся перечислением своих элементов или указанием общего признака элементов, принадлежащих данному множеству. Это понятие оказывается чрезвычайно плодотворным в дидактике. Оно одновременно обозначает нечто одно и многое. Понятие множества означает обособленность элементов данного множества от элементов других множеств. Множество может состоять из подмножеств, а подмножества − из элементов. За неделимый элемент может приниматься любая реальность. Здесь заканчивается формализм и начинается содержательная трактовка понятия множества и его составляющих.

Классификация признаков и свойств множеств разнообразна, например, множество: обучаемых, букв в алфавите, стульев, изучаемых предметов. С множествами могут производиться самые различные операции (объединение, разбиение), а между подмножествами имеют место самые различные отношения. Совокупность всех этих понятий, описывающих множество, составляет семантическое поле понятия множества. В дидактике физики мы имеем дело с множествами психических процессов, типологических и индивидуальных свойств, отношений, состояний, которые образуют семантическое поле данного понятия и с успехом используются для конкретного описания дидактических реальностей, составляющих множество.

Кроме этого, такие математические понятия, как сеть, группа, которые широко используются в дидактике в качестве моделей, имеют в своей основе понятия множеств. Систематизация, типологиза-ция, классификация дидактических данных производится на основе понятия множества. Системные категории структура, состав, функция также основываются на понятии множества. Таким образом, для сближения формализованных и содержательных описаний полезно начинать с содержательного анализа формализованного понятия и его семантического поля.

Следующий уровень формализованной системы может быть представлен понятием базиса. Базисом в математике называется некоторое полное множество, через которое с помощью определённой операции могут быть в стандартном виде представлены элементы некоторого другого множества. Например, множество букв алфавита является базисом для множества слов в описании, а множество простых чисел является базисом множества натуральных чисел.

Воспользуемся идеей, которая заключена в математическом понятии базиса. Будем называть семантическим базисом некоторое множество понятий, которое характеризуется полнотой, возможной упорядоченностью [1] и измеримостью, то есть в нашем понимании базис − это полное, упорядоченное, измеримое множество знаковых объектов. С элементами этого базиса могут быть сопоставлены элементы другого множества на основании принципа установления семантической близости. Приведём пример такого базиса. В работе В.А. Ганзена [1] сформулирован постулат: любая реальность наблюдаемого мира описывается пространственными, временными, энергетическими и информационными характеристиками. Эти четыре понятия: "пространство", "время", "энергия", "информация", по мнению автора, могут быть приняты за общенаучный базис, полнота набора понятий в котором имеет эмпирическое обоснование. Такой подход автора не противоречит исследованиям А.И. Уёмова: "Вещь − это система качеств. Качественно рассматриваемая вещь, так же как и вещь в традиционном понимании, состоит из частей. Но эти части являются не частями пространства, а частями системы качеств" [3]. Таким образом, мы имеем метод разложения множества признаков исследуемого объекта по элементам общенаучного базиса. Проектируя на это множество (базис) открытое множество информационных единиц исследуемого объекта. удаётся упорядочить это открытое множество через подмножества, не пересекающиеся между собой. Приведём примеры разложения признаков некоторых понятий дидактики физики по общенаучному базису:

Понятие



© 2010
Частичное или полное использование материалов
запрещено.