РУБРИКИ |
Система человек-машина |
РЕКОМЕНДУЕМ |
|
Система человек-машинаСистема человек-машинаПЛАН. I. Введение. II. Основная часть. 1. Особенности классификации системы «человек – машина». 2. Показатели качества системы «человек – машина». 3. Оператор в системе «человек машина». III. Заключение. I.Введение Инженерная психология есть научная дисциплина, изучающая объективные закономерности процессов информационного взаимодействия человека и техники с целью использования их в практике проектирования, создания и эксплуатации СЧМ. Процессы информационного взаимодействия человека и техники являются предметом инженерной психологии. С давних пор при создании орудий и средств труда учитывались те или иные свойства и возможности человека. В начале интуитивно, а позже с привлечением научных данных решалась задача приспособления техники к человеку. Однако предметом анализа последовательно становились различные свойства человека. На первых порах основное внимание уделялось вопросам
строения человеческого тела и динамики рабочих движений. На основе данных
биомеханики и антропометрии разрабатывались рекомендации, относящиеся лишь
к форме и размерам рабочего места человека и используемого им инструмента. Как самостоятельная научная дисциплина инженерная психология начала формироваться в 40-х годах нашего века. Однако идеи о необходимости комплексного изучения человека и технических устройств высказывались русскими учеными еще в прошлом столетии. Русские ученые еще в конце прошлого века предприняли попытки разработать научные и теоретические основы учения о труде. Пионером в этой области явился великий русский ученый И. М. Сеченов, который первым поставил вопрос об использовании научных данных о человеке для рационализации трудовой деятельности. И. М. Сеченов занялся изучением роли психических процессов при выполнении трудовых актов, поставил вопрос о формировании трудовых навыков и впервые показал, что в процессе трудового обучения изменяется характер регуляции: функции регулятора переходят от зрения к осязанию. Он ввел понятие активного отдыха как лучшего средства повышения и сохранения работоспособности. Инженерная психология возникла на стыке технических и психологических наук. Поэтому характерными для нее являются черты обеих наук. Как психологическая наука инженерная психология
изучает психические и психофизиологические процессы и свойства человека,
выясняя, какие требования к отдельным техническим устройствам и построению Как техническая наука инженерная психология изучает принципы построения сложных систем, посты и пульты управления, кабины машин, технологические процессы для выяснения требований, предъявляемых к психологическим, психофизиологическим и другим свойствам человека- оператора. Научно-техническая революция привела к существенному
изменению условий, средств и характера трудовой деятельности. В современном
производстве, на транспорте, в системах связи, в строительстве и сельском
хозяйстве все шире применяются автоматы и вычислительная техника;
происходит автоматизация многих производственных процессов. Следовательно, с развитием и усложнением техники возрастает
значение человеческого фактора на производстве. Необходимость изучения
этого фактора и учета его при разработке новой техники и технологических
процессов, при организации производства и эксплуатации оборудования
становится все более очевидной. От успешности решения этой задачи зависит
эффективность и надежность эксплуатации создаваемой техники,
функционирование технических устройств и деятельность человека, который
пользуется этими устройствами в процессе Труда, должны рассматриваться во
взаимосвязи. Эта точка зрения привела к формированию понятия системы Система «человек — машина» представляет собой частный случай управляющих систем, в которых функционирование машины и деятельность человека связаны единым контуром регулирования. При организации взаимосвязи человека и машины в СЧМ основная роль принадлежит уже не столько анатомическим и физиологическим, сколько психологическим свойствам человека: восприятию, памяти, мышлению, вниманию и т. п. От психологических свойств человека во многом зависит его информационное взаимодействие с машиной. II. Основная часть. 1. Особенности классификации системы «человек – машина». Под системой в общей теории систем понимается комплекс
взаимосвязанных и взаимодействующих между собой элементов, предназначенный
для решения единой задачи. Системы могут быть классифицированы по различным
признакам. Одним из них является степень участия человека в работе системы. На практике применяются самые разнообразные виды систем «человек — машина». Основой их классификации могут явиться следующие четыре группы признаков: целевое назначение системы, характеристики человеческого звена, тип и структура машинного звена, тип взаимодействия компонентов системы. Целевое назначение системы оказывает определяющее влияние на многие
ее характеристики и поэтому является исходным признаком. По целевому
назначению можно выделить следующие классы систем: а) управляющие, в которых основной задачей человека является
управление машиной (или комплексом); б) обслуживающие, в которых человек контролирует состояние
машинной системы, ищет неисправности, производит наладку, настройку, ремонт
и т.п.; в) обучающие, т. е. вырабатывающие у человека определенные навыки Особенность управляющих и обслуживающих систем заключается в том, что
объектом целенаправленных воздействий в них является машинный компонент
системы. В обучающих и информационных СЧМ направление воздействий
противоположное — на человека. В исследовательских системах воздействие
имеет и ту, и другую направленность. В отличие от этого в иерархических СЧМ устанавливается или
организационная, или приоритетная иерархия взаимодействия людей с
техническими устройствами. Так, в системе управления воздушным движением
диспетчер аэропорта образует верхний уровень управления. Следующий
уровень — это командиры воздушных судов, действиями которых руководит
диспетчер. Третий уровень — остальные члены экипажа, работающие под
руководством командира корабля. Другим типом СЧМ являются простейшие человеко-машинные системы,
которые включают стационарное и нестационарное техническое устройство Следующим важным типом СЧМ являются сложные человеко-машинные системы, включающие помимо использующего их человека некоторую совокупность технологически связанных, но различных по своему функциональному назначению аппаратов, устройств и машин, предназначенных для производства определенного продукта (энергетическая установка, прокатный стан, автоматическая поточная линия, вычислительный комплекс и т. п.). В этих системах, как правило, связанность технологического процесса обеспечивается локальными системами автоматического управления. В задачу человека входит общий контроль за ходом технологического процесса, изменение режимов работы, оптимизация отдельных процессов, настройка, пуск и остановка. Еще более сложным типом СЧМ являются системотехнические комплексы. Они представляют собой сложную техническую систему с не полностью детерминированными связями и коллектив людей, участвующих в ее использовании. Для систем такого типа характерным является взаимодействие не только по цепи «человек — машина», но и по цепи «человек — человек — машина». Другими словами, в процессе своей деятельности человек взаимодействует не только с техническими устройствами, но и с другими людьми. При всей сложности системотехнических комплексов их в большинстве случаев можно представить в виде иерархии более простых человеко-машинных систем. Типичными примерами системотехнических комплексов различного уровня и назначения могут служить судно, воздушный лайнер, промышленное предприятие, вычислительный центр, транспортная система и т. п. В основу классификации СЧМ по типу взаимодействия человека и
машины может быть положена степень непрерывности этого взаимодействия. По
этому признаку различают системы непрерывного (например, система «водитель—
автомобиль») и эпизодического взаимодействия. Последние, в свою очередь,
делятся на системы регулярного взаимодействия. Примером системы регулярного
взаимодействия может служить система «оператор — ЭВМ». В ней ввод
информации и получение результатов определяются характером решаемых задач,
т. е. режимы взаимодействия во времени регламентируются характером и
объемом вычислений. Стохастическое эпизодическое взаимодействие имеет место
в таких системах, как «оператор — система централизованного контроля», Однако несмотря на большое разнообразие систем «человек — машина», они имеют целый ряд общих черт и особенностей. Эти системы являются, как правило, динамическими, целеустремленными, самоорганизующимися, адаптивными. Системы «человек — машина» относятся к классу сложных динамических систем, т. е. систем, состоящих из взаимосвязанных и взаимодействующих элементов различной природы и характеризующихся изменением во времени состава структуры и взаимосвязей. Из этого следуют характерные особенности, присущие СЧМ как сложной динамической системе: разветвленность структуры (или связей) между элементами (человеком и машиной); разнообразие природы элементов (в состав СЧМ могут входить человек, коллектив людей, автоматы, машины, комплексы машин и т.д.); перестраиваемость структуры и связей между элементами (например, при нормальном ходе технологического процесса оператор лишь следит за ходом его протекания, т. е. включен в контур управления как бы параллельно; при отклонении от нормы оператор берет управление на себя, т. е. включается в контур управления последовательно); автономность элементов, т. е. способность их автономно выполнять часть своих задач. Системы «человек — машина» относятся также к классу целеустремленных систем. В общем случае считается, что система действует целеустремленно, если она продолжает преследовать одну и ту же цель, изменяя свое поведение при изменении внешних условий. Существенной особенностью целеустремленных систем является их способность получать одинаковые результаты различными способами. Системы этого класса могут изменять свои задачи; они выбирают как сами задачи, так и средства их реализации. Целеустремленность СЧМ обусловлена тем, что в нее включен человек. Именно он ставит цели, определяет задачи и выбирает средства достижения цели. Системы «человек — машина» можно рассматривать и как адаптивные системы. Свойство адаптации заключается в приспособлении СЧМ к изменяющимся условиям работы, в изменении режима функционирования в соответствии с новыми условиями. Для повышения эффективности СЧМ необходимо предусмотреть возможность адаптации как внутри самой системы, так и по отношению к внешней среде. До недавнего времени свойство адаптации СЧМ реализовалось благодаря приспособительным' возможностям человека, гибкости и пластичности его поведения, возможности его изменения в зависимости от конкретной обстановки. В настоящее время, как отмечалось в гл. 1, на повестку дня ставится вопрос о создании СЧМ, в которых свойство адаптации реализуется путем соответствующего технического обеспечения. Речь идет о создании таких технических средств, которые могут изменять свои параметры и условия деятельности в зависимости от текущего конкретного психофизиологического состояния человека и показателей эффективности его деятельности. И наконец, системы «человек — машина» можно отнести к классу
самоорганизующихся систем, т. е. систем, способных к уменьшению энтропии 1. Возможно более полное и точное определение назначения системы, ее целей и задач. Это требует, в свою очередь, анализа состава и значимости отдельных целей, подцелей и задач; определения возможности их осуществимости и требуемых для этого средств и ресурсов; определения показателей эффективности и целевой функции СЧМ. 2. Исследование структуры системы, и прежде всего состава входящих в нее компонентов, характера межкомпонентных связей и связей системы с внешней средой, пространственно-временной организации компонентов системы и их связей, границ системы, ее изменчивости и особенностей на различных стадиях существования (жизненного цикла). 3. Последовательное изучение характера функционирования системы, в том числе: всей системы в целом, отдельных подсистем в пределах целого, изменчивости функций и их особенностей на разных стадиях существования системы. 4. Рассмотрение системы в динамике, в развитии, т. е. на
различных этапах ее жизненного цикла: при проектировании, производстве и
эксплуатации. Содержание инженерно-психологического обеспечения СЧМ |Этап |Аспект инженерно-психологического обеспечения | Он включает в себя разработку необходимых справочно-методических материалов, с помощью которых можно выполнять эти работы, а также разработку нормативных документов, регламентирующих (в частности, утверждающих) степень и полноту учета человеческого фактора при проектировании, производстве и эксплуатации СЧМ. При отсутствии таких документов проведение работ по учету человеческого фактора не будет являться обязательным мероприятием, и поэтому задача инженерно-психологического обеспечения не может считаться полностью решенной. 2. Показатели качества системы «человек – машина». В нашей стране разработана определенная номенклатура показателей качества промышленной продукции. Она включает в себя 8 групп показателей, с помощью которых можно количественно оценивать различные свойства продукции. К ним относятся: показатели назначения, надежности и долговечности, технологичности, стандартизации и унификации, а также эргономический, эстетический, патентно-правовой и экономический показатели. Не рассматривая подробно все показатели, остановимся лишь на тех из них, которые влияют на деятельность человека в СЧМ или зависят от результатов его деятельности. Быстродействие (время цикла регулирования Tц) определяется временем прохождения информации по замкнутому контуру «человек — машина»: k Тц=S ti i=1 где Tц — время задержки (обработки) информации в i-м звене СЧМ; k — число последовательно соединенных звеньев СЧМ; в качестве их могут выступать как технические звенья, так и операторы. Надежность характеризует безошибочность (правильность) решения стоящих перед СЧМ задач. Оценивается она вероятностью правильного решения задачи, которая, по статистическим данным, определяется отношением Pпр=1 – mош / N где mош и N — соответственно число ошибочно решенных и общее число решаемых задач. Важной характеристикой деятельности оператора является также
точность его работы. На этой характеристике следует остановиться особо, ибо
в ряде случаев происходит некоторое смешение ее с надежностью. В качестве
исходного понятия для определения обеих характеристик используется понятие Под точностью работы оператора следует понимать степень отклонения некоторого параметра, измеряемого, устанавливаемого или регулируемого оператором, от своего истинного, заданного или номинального значения. Количественно точность работы оператора оценивается величиной погрешности, с которой оператор измеряет, устанавливает или регулирует данный параметр: Y= Iн - Iоп где Iн — истинное или номинальное значение параметра; Iоп — фактически
измеряемое или регулируемое оператором значение этого параметра. В работе оператора следует различать случайную и систематическую погрешности. Случайная погрешность оператора оценивается величиной среднеквадратической погрешности, систематическая погрешность — величиной математического ожидания отдельных погрешностей. Методы их определения приведены в работах. Своевременность решения задачи СЧМ оценивается вероятностью того, что стоящая перед СЧМ задача будет решена за время, не превышающее допустимое: Тдоп Рсв = Р {Тц < Тдоп} = ( ? (Т) dT, 0
где ? (Т) — функция плотности времени решения задачи системой «человек —
машина». Рсв= 1 – mнс / N где mнс — число несвоевременно решенных СЧМ задач. Поскольку большинство СЧМ работают в рамках определенных временных
ограничений, то несвоевременное решение задачи приводит к недостижению
цели, стоящей перед системой «человек — машина». Поэтому в этих случаях в
качестве общего показателя надежности используется вероятность правильного Рсмч= PпрРсв , Такой показатель используется, например, при применении обобщенного структурного метода оценки надежности СЧМ [см. 31]. Безопасность труда человека в СЧМ оценивается вероятностью безопасной работы n Рсчм= 1 - S Pвоз I Pош I , i=1 где Рвоз i — вероятность возникновения опасной или вредной для человека производственной ситуации i-го типа; РОШ i — вероятность неправильных действий оператора в i-й ситуации; n — число возможных травмоопасных ситуаций. Опасные и вредные ситуации могут создаваться как техническими
причинами (неисправность машины, аварийная ситуация, неисправность защитных
сооружений), так и нарушениями правил и мер безопасности со стороны людей. Степень автоматизации СЧМ характеризует относительное количество информации, перерабатываемой автоматическими устройствами. Эта величина определяется по формуле Ka= 1 – Ноп / Нсмч , где Ноп — количество информации, перерабатываемой оператором; Нсчм — общее количество информации, циркулирующей в системе «человек — машина». Для каждой СЧМ существует некоторая оптимальная степень автоматизации (koпт), при которой эффективность СЧМ становится максимальной. При этом чем сложнее СЧМ, тем больше потери эффективности из- за неправильного выбора степени автоматизации. Это видно из сравнения кривых 1 и 2 на рис. Оптимальная степень автоматизации устанавливается в процессе решения задачи распределения функций между человеком и машиной. Зависимость эффективности СЧМ от степени автоматизации: 1 — для простых систем; 2 — для сложных систем Экономический показатель характеризует полные затраты на систему Wсчм=Сэ + Ен(Соп + Си), где Ен — нормативный коэффициент экономической эффективности капитальных затрат. При заданной величине Wсчм путем перераспределения затрат между
отдельными составляющими Си, Соп и Сэ можно получить различные значения
общей эффективности СЧМ. И, наоборот, заданная эффективность СЧМ может быть
обеспечена с помощью различных затрат в зависимости от распределения их
между отдельными составляющими. Методы технико-экономической оптимизации Большое значение при анализе и оценке СЧМ имеют эргономические
показатели. Они учитывают совокупность специфических свойств системы С помощью рассмотренных показателей можно оценить одно или
несколько однотипных свойств СЧМ. Иногда их может оказаться недостаточно
для решения инженерно-психологических задач (например, при выборе одного из
нескольких конкурирующих вариантов СЧМ). В этом случае нужно дать
интегральную оценку качества системы «человек — машина» как совокупности
всех ее основных свойств. Для этого используется понятие эффективности СЧМ,
под которой понимается степень приспособленности системы к выполнению
возложенных на нее функций. При определении эффективности СЧМ необходимо
учесть следующие правила: для получения полной интегральной оценки следует
учитывать всю совокупность частных показателей качества СЧМ;
частные показатели должны входить в общую оценку с некоторым «весом»,
характеризующим их важность в данной системе;
поскольку частные показатели имеют различный физический смысл и измеряются
в разных величинах, они должны быть приведены к безразмерному и
нормированному относительно некоторого эталона виду. Эi= Ei / Emax i для понижающих показателей Эi= Ei / Emin i где Эi и Ei — соответственно нормированное и абсолютное значение i-го
частного показателя; Emax i и emin i — максимальное (минимальное) значение i-гo частного показателя, которое имеет существующая или проектируемая
аналогичная система. Эсчм= S ai Эi i=1
где аi- — «весовые» коэффициенты, сумма которых должна быть равна единице;
n — число учитываемых частных показателей. 3. Оператор в системе «человек машина». Как уже отмечалось, независимо от степени автоматизации СЧМ,
человек остается главным звеном системы «человек — машина». Именно он
ставит цели перед системой, планирует, направляет и контролирует весь
процесс ее функционирования. Поэтому деятельность оператора является
исходным пунктом инженерно-психологического анализа и изучения СЧМ. 1. С развитием техники увеличивается число объектов (и их параметров), которыми необходимо управлять. Это усложняет и повышает роль операций по планированию и организации труда, по контролю и управлению производственными процессами. 2. Развиваются системы дистанционного управления. Человек все более удаляется от управляемых объектов, о динамике их состояния он судит не по данным непосредственного наблюдения, а на основании восприятия сигналов от устройств отображения информации, имитирующих реальные производственные объекты. Осуществляя дистанционное управление, человек получает необходимую информацию в закодированном виде (т. е. в виде показаний счетчиков, индикаторов, измерительных приборов и т. д.), что обусловливает необходимость декодирования и мысленного сопоставления полученной информации с состоянием реального управляемого объекта. 3. Увеличение сложности и скорости течения производственных процессов выдвигает повышенные требования к точности действий операторов, быстроте принятия решений в осуществлении управленческих функций. В значительной мере возрастает степень ответственности за совершаемые действия, поскольку ошибка оператора при выполнении даже самого простого акта может привести к нарушению работы всей системы «человек — машина», создать аварийную ситуацию с угрозой для жизни работающих людей. Поэтому работа оператора в современных человеко-машинных комплексах характеризуется значительными увеличениями нагрузки на нервно-психическую деятельность человека, в связи с чем по-иному ставится проблема критериев тяжести операторского труда. Основным критерием становится не физическая тяжесть труда, а его нервно-психическая напряженность. 4. В условиях современного производства изменяются условия работы
человека. Для некоторых видов деятельности оператора характерно ограничение
двигательной активности, которое не только проявляется в общем уменьшении
количества мышечной работы, но и связано с преимущественным использованием
малых групп мышц. Иногда оператор должен выполнять работу в условиях
изоляции от привычной социальной среды, в окружении приборов и индикаторов. 5. Повышение степени автоматизации производственных процессов
требует от оператора высокой готовности к экстренным действиям. При
нормальном протекании процесса основной функцией оператора является
контроль и наблюдение за его ходом. При возникновении нарушений оператор
должен осуществить резкий переход от монотонной работы в условиях Рассмотренные особенности операторского труда позволяют выделить его в специфический вид профессиональной деятельности, в связи с чем для его изучения, анализа и оценки недостаточно классических методов, разработанных психологией и физиологией труда и используемых для оптимизации различных видов работ, не связанных с дистанционным управлением по приборам. Деятельность оператора в системе «человек — машина» может носить самый разнообразный характер. Несмотря на это, в общем виде она может быть представлена в виде четырех основных этапов. 1. Прием информации. На этом этапе осуществляется восприятие поступающей информации об объектах управления и тех свойствах окружающей среды и СЧМ в целом, которые важны для решения задачи, поставленной перед системой «человек — машина». При этом осуществляются такие действия, как обнаружение сигналов, выделение из их совокупности наиболее значимых, их расшифровка и декодирование; в результате у оператора складывается предварительное представление о состоянии управляемого объекта: информация приводится к виду, пригодному для оценки и принятия решения. 2. Оценка и переработка информации. На этом этапе производится сопоставление заданных и текущих (реальных) режимов работы СЧМ, производится анализ и обобщение информации, выделяются критичные объекты и ситуации и на основании заранее известных критериев важности и срочности определяется очередность обработки информации. Качество выполнения этого этапа во многом зависит от принятых способов кодирования информации и возможностей оператора по ее декодированию. На данном этапе оператором могут выполняться такие действия, как запоминание информации, извлечение ее из памяти, декодирование и т. п. 3. Принятие решения. Решение о необходимых действиях принимается
на основе проведенного анализа и оценки информации, а также на основе
других известных сведений о целях и условиях работы системы, возможных
способах действия, последствиях правильных и ошибочных решений и т. д. 4. Реализация принятого решения. На этом этапе осуществляется приведение принятого решения в исполнение путем выполнения определенных действий или отдачи соответствующих распоряжений. Отдельными действиями на этом этапе являются: перекодирование принятого решения в машинный код, поиск нужного органа управления, движение руки к органу управления и манипуляция с ним (нажатие кнопки, включение тумблера, поворот рычага и т. п.). На каждом из этапов оператор совершает самоконтроль собственных действий. Этот самоконтроль может быть инструментальным или неинструмеитальным. В первом случае оператор проводит контроль своих действий с помощью специальных технических средств (например, с помощью специальных индикаторов контролирует правильность набора информации). Во втором случае контроль ведется без применения технических средств. Он осуществляется путем визуального осмотра, повторения отдельных действий и т. п. Проведение любого вида самоконтроля способствует повышению надежности работы оператора. На качество и эффективность выполнения каждого из рассмотренных
этапов оказывает влияние целый ряд факторов. Так, например, качество приема
информации зависит от вида и количества индикаторов, организации
информационного поля, психофизических характеристик предъявляемой
информации (размеров изображений, их светотехнических характеристик,
цветового тона и цветового контраста). Эффективность принятия решения определяется следующими факторами: типом решаемой задачи, числом и сложностью проверяемых логических условий, сложностью алгоритма и количеством возможных вариантов решения. Выполнение управляющих движений зависит от числа органов управления, их типа и способа размещения, а также от большой группы характеристик, определяющих степень удобства работы с отдельными органами управления (размер, форма, сила сопротивления и т.д.). Первые два этапа в совокупности называют иногда получением информации, последние два этапа — ее реализацией. Из проведенного описания видно, что получение информации включает в себя как бы два уровня, поскольку текущая информация передается оператору через систему технических устройств. Он, как правило, не имеет возможности непосредственно наблюдать за объектом управления (во всяком случае эта возможность ограничена), а получает необходимую информацию со средств отображения в закодированном виде. С их помощью формируется информационная модель объекта управления. Поэтому на первом уровне получения информации происходит восприятие оператором информационной модели, т. е. восприятие физических явлений, выступающих в роли носителей информации (положение стрелки на шкале измерительного прибора, комбинация знаков на экране электронно-лучевой трубки, мигание лампочки, звук и т. п.). После этого на втором уровне осуществляется декодирование воспринятых сигналов и формирование на этой основе некоторой «умственной картины» управляемого процесса и условий, в которых он протекает. Такую «умственную картину» в инженерной психологии принято называть концептуальной моделью '. Она дает возможность оператору соотнести в единое целое различные части управляемого процесса и затем на основе принятого решения осуществить эффективные управляющие действия, т. е. правильно реализовать полученную информацию. Деятельность оператора, как отмечалось в начале данного параграфа, имеет целый ряд специфических особенностей. Поэтому успешное ее выполнение предполагает определенный уровень развития психических процессов. Основными из них являются восприятие, внимание, память, представление и др.. До сих пор нами рассматривались общие черты деятельности оператора. Однако наряду с ними можно выделить и различные виды операторского труда, каждый из которых характеризуется своими частными особенностями. Оператор-технолог непосредственно включен в технологический
процесс. Он работает в основном в режиме немедленного обслуживания. Оператор-наблюдатель (контролер) является классическим типом
оператора, с изучения деятельности которого и началась инженерная
психология. Важное значение для деятельности такого оператора имеют
информационные и концептуальные модели, а также процессы принятия решения. Оператор-исследователь в значительно большей степени использует
аппарат понятийного мышления и опыт, заложенные в концептуальную модель. Оператор-руководитель в принципе мало отличается от предыдущего типа, но для него механизмы интеллектуальной деятельности играют главенствующую роль. К таким операторам относятся организаторы, руководители различных уровней, лица, принимающие ответственные решения в человеко-машинных комплексах и обладающие интуицией, знанием и опытом. Для деятельности оператора-манипулятора большое значение имеет сенсомоторная координация (например, непрерывное слежение за движущимся объектом) и моторные (двигательные) навыки. Хотя механизмы моторной деятельности имеют для него главенствующее значение, в деятельности используется также аппарат понятийного и образного мышления. В функции оператора-манипулятора входит управление роботами, манипуляторами, машинами- усилителями мышечной энергии человека (станки, экскаваторы, транспортные средства и т. п.). Рассмотренные ранее общие психологические качества операторов и степень их проявления могут теперь быть дифференцированы в зависимости от вида деятельности оператора. Так, оператору-руководителю в первую очередь необходимы: высокая помехоустойчивость при восприятии слуховой и зрительной информации; способность к абстрактному мышлению, обобщению, конкретизации, мышлению вероятностными категориями; критичность мышления. В отличие от этого требования к оператору-манипулятору будут иные. К ним относятся: высокая чувствительность и помехоустойчивость при восприятии различных видов информации, способность к устойчивой моторной работе в максимальном темпе, высокая мышечно-суставная чувствительность. Аналогичные требования могут быть разработаны и для операторов других типов. Все их нужно учитывать при проектировании деятельности и профессиональном отборе операторов. III. Заключение. Инженерная психология, являющаяся особой научной дисциплиной,
пограничной для технических и психологических наук, возникла как ответ на
нужды научно-технического прогресса. Ее объектом являются системы «человек Создание новых образцов техники и новых технологических процессов неизбежно сопровождается изменениями требований к человеку как субъекту труда; изменяются орудия и условия труда, формируются новые виды трудовой деятельности. Каждый новый шаг в развитии техники и технологии порождает и новые проблемы, требующие инженерно-психологического исследования. Это значит, что инженерная психология есть наука непрестанно развивающаяся. Ее развитие органически связано с научно-техническим прогрессом. С ходом научно-технического прогресса роль инженерной психологии возрастает. В современном обществе инженерная психология, как и все другие науки, поставлена на службу человеку труда. Главная задача инженерной психологии — это разработка оптимальных методов и средств разрешения противоречий между технологическими процессами и техникой, с одной стороны, и трудовой деятельностью человека — с другой, возникающих в процессе развития производства. Ее цель — повышение производительности труда путем гуманизации техники и технологии. Список литературы. 1. Основы инженерной психологии. / под ред. Ломова. М 1986г. 2. А.Н. Леонтьев / Лекции по общей психологии. / М. 2000г.
|
|
© 2010 |
|