РУБРИКИ

Моделирование транзисторного автогенератора

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

Моделирование транзисторного автогенератора

Моделирование транзисторного автогенератора

Министерство образования и науки Украины

Донецкий национальный университет

Физический факультет

Курсовая работа

по радиоэлектронике

на тему: «моделирование транзисторного автогенератора»

студента третьего курса З/О

специальность «Радиофизика и электроника»

Антонова Александра Михайловича

                                             Донецк, 2008

Введение:

Генераторы электрических колебаний - это устройства, преобразующие электрическую энергию постоянного тока или тока промышленной частоты в энергию электромагнитных колебаний различной формы. Генераторы широко применяют в схемах автоматики, различных электронных схемах, системах телеизмерения и телеуправления, в ЭВМ и т.п.; они работают в непрерывном и импульсном режимах.

Генераторы различают по: способу возбуждения (с независимым возбуждением или самовозбуждением); форме генерируемых колебаний (синусоидальная или несинусоидальная - пилообразные, прямоугольные и др.); диапазону генерируемых частот (инфразвуковые, звуковой частоты 0.01 Гц – 100 кГц, высокочастотные 100 кГц – 100 МГц, сверхвысокочастотные 100 МГц и выше); мощности генерируемых колебаний (от милливатт до тысячи киловатт).

В качестве колебательных систем в генераторах используют резонансные индуктивно- ёмкостные контуры (L, C) и резистивное - ёмкостные цепочки (R, C). Режимы работы генератора определяют форму колебаний, напряжение и выходную мощность, КПД и другие параметры. Существуют три основных разновидности режимов работы генераторов: недонапряжённый, критический и перенапряжённый.

Для возбуждения электромагнитных колебаний применяют различные схемы генераторов с обратными связями: при возбуждении колебаний на частотах ниже критических – с трансформаторной связью (рис.1), индуктивной (рис.2), емкостной (рис.3). На частотах выше критической успешно работают генераторы, собранные по типовой схеме, показанной на рис.4, с ёмкостной обратной связью  (в таких схемах условия самовозбуждения обеспечиваются подбором ёмкости С0). Распространённая типовая схема RC-генератора звуковых частот на транзисторах изображена  на рис.5 , сдвиг фазы в цепи обратной связи обеспечивается элементами R,C.

Генераторы с независимым возбуждением представляют собой высокочастотные усилители мощности, на вход которых подаются колебания от генераторов с самовозбуждением.


Генератор с самовозбуждением, или автогенератор, представляет собой резонансный усилитель с коэф. усиления К, охваченный положительной обратной связью (ПОС) с коэф. обратной связи . В качестве цепи обратной связи (ОС) используются RC или LC- контуры. (RC- в низкочастотных и LC- в высокочастотных автогенераторах).

Условием самовозбуждения является выполнение соотношения К=1.

Незатухающие колебания устанавливаются лишь при выполнении или фазового и амплитудного условий самовозбуждения или, как говорят, при балансе фаз и амплитуд. Фазовое условие самовозбуждения заключается в том, что суммарный сдвиг фаз усилительного каскада и цепи обратной связи должна быть .

Амплитудное условие самовозбуждения состоит в том, что затухание, вносимое фазосдвигающей цепочкой обратной связи, полностью компенсируется усилительным каскадом.




Моделирование транзисторного автогенератора.

Для моделирования транзисторного автогенератора необходимо собрать схему. Для этого нужно нанести все компоненты схемы на рабочую область программы Electronics Workbench и соединить все контакты проводниками.


рис.6

На рис. 6 показана рабочая область программы с собранной схемой автогенератора. По умолчанию Workbench присваивает всем конденсаторам ёмкость равную 1 мкФ, всем резисторам сопротивление в 1 кОм, всем катушкам индуктивности индуктивность в 1 мГн. Полупроводниковые приборы (транзисторы, диоды и т.д.) по умолчанию обладают идеальными характеристиками. Напряжение источника питания установим равным 12 Вольт.


Включим схему нажав левой клавишей мыши на тумблер в правом верхнем углу. Если генератор входит в режим генерации, то на экране осциллографа мы увидим колебания.

рис.7

Как видно из рис.7 на экране осциллографа присутствует сигнал переменного напряжения. Следовательно, генератор находится в режиме возбуждения.                                      рис.8  

Более подробно исследовать сигнал на экране осциллографа можно нажав на кнопку Expand. (рис.8)

Из данного рисунка видно, что амплитуда сигнала составляет около 1.4 Вольт, время нарастания генерации- 40 миллисекунд.                   

Более подробно сигнал можно рассмотреть уменьшив время развёртки осциллографа. На рис. 9 показан сигнал при режимах: 0.05мс/дел и 2В/дел.

       рис.9


По показанию осциллографа можно посчитать частоту выходного сигнала зная его период по формуле . Частота равна: 1/0.00012= 8333 Гц. Так же из рисунка видно, что у сигнала присутствуют небольшие амплитудные искажения.

Заменим на схеме идеальный транзистор на модель довольно распространённого реального транзистора 2N3904. На рис. 10 мы видим, что сигнал по форме очень близок к синусоиде. Амплитудные искажения минимальны.

рис.10




















Список использованной литературы:

1. Б.М.Гуревич, Н.С.Иваненко «Справочник по электронике для молодого рабочего»; Москва, «Высшая школа», 1987г.

2. Р.М.Терещук, К.М.Терещук, С.А.Седов «полупроводниковые приёмно-усилительные устройства. Справочник радиолюбителя»; Киев, «Наукова думка», 1981г.

3. В.И.Карлащук "Электронная лаборатория на IBM PC. Программа Electronics Workbench и ее применение"; «Солон-пресс», 2006г.






© 2010
Частичное или полное использование материалов
запрещено.