РУБРИКИ |
Разработка генератора сигналов на цифровых микросхемах |
РЕКОМЕНДУЕМ |
|
Разработка генератора сигналов на цифровых микросхемахРазработка генератора сигналов на цифровых микросхемахВведение Ускорение научно-технического прогресса, развитие автоматизации процессов производства требует постоянного совершенствования систем сбора и переработки информации .Наиболее успешно это решается при выполнении операций с величинами , представленными в дискретном (цифровом ) виде . К основным преимуществам обработки дискретной информации следует отнести высокую точность, большое быстродействие и хорошую помехозащищенность, в чем немалую роль сыграл опыт разработки средств цифровой вычислительной техники. Последнее относится не только к результатам, полученным на выходе цифровых приборов, но и ко многим узлам собственно аналого-цифровых преобразователей (АЦП), представляющих типичные элементы и устройства ЭВМ. Следует отметить также и то, что в настоящее время в связи со снижением стоимости элементов и узлов цифровой и вычислительной техники наметилась тенденция ещё более широкого введения этих элементов в состав измерительных устройств с цифровым выходом, вплоть до применения процессоров, устройств отображения и т.п. Положительные свойства с многодекадным цифровым отсчетом известны давно и в случаях, когда необходима высокая точность измерения при большом линейном диапазоне, применялись приборы подобного типа ( например, мосты и компенсаторы постоянного тока ). При этом, однако, логические операции в измерительном процессе выполнялись оператором. Современные цифровые приборы отличаются большой степенью автоматизации измерительного процесса, высоким быстродействием и удобством передачи результатов измерения на расстоянии, что особенно важно при непосредственной передаче информации в ЭВМ, работающие в режиме реального масштаба времени, например, в системе автоматического управления технологическим процессом. Автоматические цифровые приборы также широко применяют при выполнении лабораторных и цеховых измерений с участием оператора; при этом повышается удобство и производительность измерений, а также исключается субъективная погрешность отсчета, связанная с использованием стрелочных приборов. В настоящее время наиболее распространен цифровые приборы для измерения таких электрических величин, как напряжение, ток, сопротивление, частота, фаза, период, длительность импульсов и т.д. В данной дипломником проекте основное внимание уделено наиболее проверенным вариантом электронных цифровых приборов, выпускающимся серийно или отвечающим требованиям к серийному выпуску. К подобным требованиям, в первую очередь, относится отсутствие в составе комплектующих изделий элементов, требующих индивидуального подбора, технологичность конструкции, удобство эксплуатации. Аналитическая часть Общие вопросы проектирования электронных цифровых приборов . 1.1 Классификация цифровых приборов . Правильно составленная классификация облегчает изучение тех или иных предметов и, более того, в ряде случаев направляет исследователя на создание новых устройств, свойства которых не были известны. К настоящему моменту имеется значительное количество предложений по классификации цифровых приборов, которые отражают разные этапы развития цифровой измерительной техники и различный подход к выбору основных классификационных признаков. Рассматриваемая классификация основана на некоторых признаках, представляющих интерес для пользователя цифровых приборов, и охватывает практически все известные типы электронных цифровых измерительных устройств. Как показано на структурной схеме (рис.1.1) цифровой измерительный прибор состоит из АЦП и устройства цифровой индикации УИ. Если нет необходимости в визуальном контроле результатов измерения, АЦП применяют как самостоятельное устройство, обеспечивающее на своем выходе выдачу результатов измерения в коде, удобном для ввода в ЭВМ. Назначение узлов АЦП следующее. Во входном преобразователе ПР1
аналоговая величина преобразовывается из одного вида в другой (А1-А2);
например, здесь производится масштабирование входного сигнала,
преобразование напряжения, сопротивления, емкости и других величин в
постоянное напряжение. В этом же узле осуществляется как это требуется в
некоторых типах АЦП, предварительная дискретизация по времени, при которой
с помощью специальных схем выборки непрерывный сигнал превращается в
последовательность импульсов, величина которых соответствует уровню
непрерывного сигнала в определенные моменты времени. Собственно
преобразование аналоговой величины в код (А2-К1) выполняется
преобразователем аналог-код ПР2. Однако, если на выходе этого
преобразователя код, например, отраженный неудобен для дальнейшего
использования, то в таком случае применяют дополнительный преобразователь Основную функцию АЦП выполняет преобразователь аналог-код; поэтому в качестве первого классификационного признака выбран способ формирования разрядов в процессе преобразования аналоговой величины в код. Наибольшее распространение в АЦП получили временной и пространственный способы формирования разрядов. Аналого-цифровые преобразователи с пространственным способом
формирования разрядов позволяют определить все разряды кода одновременно. Как правило, используют отраженный код (например код Грея), позволяющий снизить ошибку неоднозначности до единицы младшего разряда в то время, как при позиционном двоичном коде ошибка может достигать 50% максимального значения. При временном способе разряды цифрового кода образуются последовательно один за другим и в таком же порядке поступают по однопроводной линии в следующие узлы прибора. К таким АЦП относят устройства с время - импульсным преобразованием, в которых постоянное напряжение преобразуется в пропорциональный ему временной интервал, а затем с помощью измерителя интервалов в цифровой код, так что к моменту окончания временного интервала завершается отработка последнего разряда; а также АЦП поразрядного кодирования с последовательной отработкой разрядов. В электромеханических АЦП маска или диск смещаются пропорционально преобразуемой аналоговой величине относительно неподвижного устройства считывания; в электронных - маска неподвижна, а плоский считывающий луч электронно-лучевой трубки, смещается. Некоторое распространение получили электромеханические АЦП, используемые в преобразователях угол-код[17]. АЦП пространственного кодирования, основанные на применении кодирующей электронно-лучевой трубки, с помощью которых можно добиться высокого быстродействия, из-за значительных трудностей при разработке узлов прибора распространения не получили. Электронный вариант пространственного АЦП, включающий 2n-1 схем сравнения, на выходы которых подается исследуемое напряжение и напряжения от 2n-1 источников опорных сигналов (делителей напряжения ), отличающихся от соседних по уровню на 1 квант, обеспечивает длительность преобразования, равную времени срабатывания одной схемы сравнения и дешифратора. При выборе прибора по способу формирования разрядов учитывают, что в данном случае является более важным -экономия оборудования или выигрыш во времени. Для решения компромисса между требованиями быстродействия и экономии оборудования разработаны АЦП со смешанным пространственно- временным способом формирования кода. При этом весь код делится на группы разрядов, которые формируются одновременно с пространственным разделением; обработку групп производят последовательно по определенному временному графику. Вторым классификационным признаком, во многом определяющим структуру и
свойства АЦП, является тип выбранного кода. Единичный код (здесь имеется в виду та модификация единичного кода, когда число представляется пакетом единиц, изолированных паузами) применяют в таких широко распространенных АЦП с временным разделением разрядов, как время -импульсный (где с помощью последовательности счетных импульсов измеряется временной интервал) или частотно-импульсный (где аналоговая величина - частота, представленный последовательностью импульсов - преобразуется в число при прохождении на счетчик в течение калиброванного временного интервала). Если единичный код применяют в АЦП с пространственным разделением разрядов, то во всех каналах имеются независимые образцовые напряжения, отличающиеся друг от друга на один квант, отработка всего кода осуществляется без распространения от разряда к разряду. Этот метод преобразования называют иногда методом считывания. Двоично-десятичный код используют в цифровых приборах с временным разделением разрядов, где с помощью несложного дешифратора тетроды с двоичной организацией достаточно просто обеспечивают отсчет в десятичном коде. Отраженный код, в частности код Грея, чаще всего используют при
пространственном разделении разрядов, благодаря чему обеспечивается быстрое
образование кода, что важно в режиме сложения за непрерывно изменяющимся
входным сигналом. Действительно, при изменении входного сигнала на одну
градацию в показании происходит замена только в одном разряде и быстро Коды избыточностью например, двоичный с цифрами 1, 0, 1 и другие специальные коды применяют иногда для уменьшения динамических погрешностей из -за переходных процессов, защиты от одиночных сбоев в АЦП с временным разделением разрядов. В АЦП со смешанным пространственно-временным способом формирования разрядов возможно одновременное использование различных кодов. Так, в интегрирующих цифровых вольтметрах типа НР-3460 А и TR6567[37] отрабатывается код двумя группами разрядов с помощью единичного кодирования, а связь между группами выполняется с десятичным масштабированием. Существуют и другие комбинации кодов в сочетании с временным и пространственным способами разделения разрядов. Третий классификационный признак связан с функцией входного преобразователя аналоговых величин (ПР1); преобразуемая величина представляется в следующие узлы АЦП своим мгновенным или интегральным значением. Определение мгновенного значения сигнала связано с некоторым
искажением результата измерения вследствие ограниченности быстродействия В преобразователях интегральных значений на входной узел прибора ПР1 возлагают функции усреднения (выделения постоянной составляющей сигнала или подавления помехи переменного тока), определения среднего, среднего квадратического или амплитудного значения тока или напряжения, преобразование активного или реактивного сопротивления в напряжение постоянного тока и т.п. Наконец, в зависимости от способа организации процесса преобразования,
который реализуется в УУ, различают АЦП циклического и следящего действия В приборах циклического действия отдельные этапы преобразования выполняются по жесткой программе, например: сброс предыдущего показания, включение входного сигнала или выборка его текущего значения, собственно измерение или заполнение счетного узла, установка показаний в индикаторном устройстве и выдача сигналов на регистратор ил ЭВМ. Частота повторений циклов преобразования (частота дискретизаций) задается специальным синхронизатором, имеющимся в приборе, или синхронизирующими сигналами, поступающими извне. Снятие показания в приборах циклического действия допускается лишь во время определенного такта, так называемого времени индикации. В приборах, имеющих специальные регистры памяти в отсчетном устройстве, показания можно снимать в любое время. АЦП следящего действия переход к следующему преобразованию осуществляется под воздействием сигналов, вырабатываемых при изменении параметров исследуемого сигнала: уровня сигнала на величину, превышающую порог чувствительности прибора; длительности периода на величину больше единицы квантования и др. Показания прибора все время готовы к снятию и передаче в другие устройства канала. Подобным свойством обладает также АЦП с пространственным разделением разрядов, являющиеся модификацией следящих приборов. Здесь сложение идет за всем уровнем сигнала; отдельный узел управления АЦП при этом на требуется. Приборы следящего действия можно отнести к устройствам адаптивной дискретизации, поскольку частота преобразований или частота корректирования кода подстраивается по характеру сигнала. Принципиально адаптивную дискретизацию можно реализовать и в приборах циклического действия. При этом например, частота повторения циклов устанавливается автоматически по данным соседних измерений. Общие сведения цифровых микросхемах. Схемотехническая реализация всего многообразия цифровых ИС осуществляется на основе логических элементов (Л.Э.), которые представляют собой логические электронные схемы, выполняющие элементарные логические функции ( конъюнкцию, дизъюнкцию, инверсию, запоминание и др.) При проектировании ЭВМ и ЦИП используется та или иная система ЛЭ, отвечающая требованиям функциональной полноты и обеспечивающая техническую реализацию достаточно сложных логических цепей, согласованность уровней входных и выходных сигналов, общность эксплуатационных свойств, типизацию функциональных схем и конструкций ЦИП и ЭВМ. Существует большое разнообразие систем логических элементов в зависимости от типа логической схемы (диодно-транзисторная логика, транзисторно-транзисторная логика, эмиттерно-связанная логика и др.), физических принципов построения активных приборов (биполярные полевые, тоннельные), от типа информационных сигналов (потенциальные, импульсные, импульсно - потенциальные ), от способа передачи информации от одного ЛЭ к другому (синхронные, асинхронные). Однако несмотря на все это, ЛЭ характеризуется некоторыми общими свойствами и параметрами, выделяющими их в самостоятельный класс электронных схем, работающих по качественному признаку да - нет. 1 Особенности работы логических элементов В логических схемах ЭВМ и ЦИП информация, представленная двоичными сигналами «0» и «1», много кратно преобразуясь и разветвляясь проходит последовательно по длине цепочки ЛЭ каждый из которых нагружен на n подобных ЛЭ и имеет m информационных входов (рис. 1.1.). Для нормального функционирования таких сложных логических схем
необходимо чтобы каждый ЛЭ без ошибочно выполнял свои функции при самых
различных комбинациях нагрузок на входе и выходе, независимо от положения в
логической цепи и длины межэлементных связей. При этом должно быть
обеспечено не искаженная логическое преобразование двоичной информации, в
то время как искажения формы и уровней выходных сигналов существенного
значения не имеют, если эти искажения находятся в пределах зон отображения Сложность логических схем и множества сочетаний входных сигналов и
нагрузок не позволяют рассчитывать на индивидуальное согласование и
регулировки ЛЭ в процессе изготовления, наладки и эксплуатации ЭВМ и ЦИП. В
связи с этим для обеспечения работоспособности ЦИП и ЭВМ необходимо, чтобы 2. Совместимость входных и выходных сигналов. В логических элементах ЦИП соединены так, чтобы выход каждого элемента работал на один или несколько входов других элементов, в том числе и на свои собственные входы. Для формального функционирование таких цепей должно быть обеспечена совместимость уровней сигналов «0» и «1» по входам и выходам, т.е. соответствующее уровни напряжений логических сигналов должны лежат в зоне отображения «0» и «1» (рис.1.2.). Только в этом случае возможно непосредственная работа одного ЛЭ на другие ЛЭ без применения специальных элементов для согласования уровней сигналов. 3. Нагрузочная способность ЛЭ. Нагрузочную способность ЛЭ принято выражать коэффициентом
разветвления по выходу (К раз) и коэффициентом объединения по входу (К
об).Под коэффициентом разветвления по выходу понимают наибольшее число
входов ЛЭ, которые можно подключить к выходу данного ЛЭ не вызывая
искажений формы и амплитуда сигнала ,выходящих заграницы зон отображения Следует отметить, что со стороны входа каждый ЛЭ представляет собой
нелинейную нагрузку, характер и значение которой определяется комбинацией и
значением сигналов на других входах этого же элемента и разбросан
параметров схемы ЛЭ. Кроме того, в реальной логической схеме каждый ЛЭ
может быть нагружен на разное число других ЛЭ и соединен с ними линиями
связи различной длины и конфигурации. В результате условия работы ЛЭ в
различных схемах ЭВМ могут существенно отличатся, что не должно, однако ,
приводит к нарушению их функционирования. В логических схемах ЭВМ и ЦИП информационные сигналы проходят
последовательно по длинной цепочке ЛЭ. Для нормального функционирования
логических схем необходимо, чтобы сигнал, проходя через каждый ЛЭ имел
некоторые стандартные амплитудные и временные параметры (амплитуды,
длительность фронтов) и существенно не изменял их. Для этого требуется
чтобы ЛЭ обладали определенными формирующими свойствами. Сигнал,
устанавливающейся при прохождении в цепи ЛЭ, называется стандартным или
асимптотическим. Понятие асимптотического сигнала было в первые введено Наиболее полно формирующие свойства ЛЭ определяются амплитудной передаточной характеристикой Uвых=f(Uвх) (рис.1.3). Рассмотрим процесс квантования сигналов на примере цепочки не
инвертирующих ЛЭ (рис.1.3.а). Точка А соответствует асимптотическому
нижнему уровню сигнала («0»), а точка В- асимптотическому верхнему уровню
сигнала («1»). Точка К разграничивает две области сигналов, с амплитудой Сигнал с амплитудой UвхUкв- к верхнему уровню (точка В) Реальное квантование стандартного сигнала происходит достаточно быстро (цепочка из одного -трех ЛЭ). Чем больше нелинейность амплитудной передаточной характеристики каждого ЛЭ, тем быстрее квантуется входной сигнал. При проектировании логических схем ЭВМ и ЦИП важно обеспечить минимальный разброс амплитудных передаточных характеристик ЛЭ при изменении окружающей температуры и напряжений питания, чтобы избежать появления вне сигналов нестандартной формы и сбоев. Разброс амплитудных передаточных характеристик ЛЭ однозначно определяет зоны отображения уровней сигналов»0» и «1» и допустимой уровень помех в логических цепях. Работоспособность в широкой области допусков на параметры. Требование работоспособности ЛЭ в широкой области допусков на параметры определяется прежде всего требованиями высокой надежности и взаимозаменяемости однотипных логических элементов в ЭВМ. Большое число одновременно работающих в ЭВМ ЛЭ (до 1000 ч и более) при колебаниях окружающей температуры и напряжения питания, а также при наличии разброса параметров и строения элементов- все это требует достаточно большой области допустимых отклонений параметров ЛЭ, т.е. большой области их работоспособности. Условия работоспособности ЛЭ определяются обычно уравнениями вида: Уi=fi(x1,x2,x3...xn)>< Yi
где х1, х2,х3...хn- параметры компонента, источников питания и нагрузки ЛЭ;
уi- параметры логического элемента; Совокупность этих условий описывает n- мерную область допустимых отклонений параметров. Любая точка области соответствует работоспособному состоянию ЛЭ, любая точка вне этой области соответствует неработоспособному состоянию ЛЭ. Область работоспособности рассчитывается вероятностному методами по параметрам распределения допусков, либо методом наихудших сочетаний параметров и проверяется обычно экспериментально. Количественное исследование этой области и оценка степени влияния на ее размеры различных параметров ЛЭ, окружающей температуры и напряжения питания являются одним из наиболее важных этапов проектирования ЛЭ и ЭВМ в целом. Применительно к интегральным схемам задача проектирования ЛЭ сводится
по существу к отысканию оптимальных значений параметров их компонентов,
обеспечивающих получение наилучших выходных параметров и характеристик ЛЭ Разработка генератора на цифровых микросхемах. Для проверки и настройки цифровых интегральных микросхемах транзисторно-транзисторной логики (ТТЛ) требуются генераторы прямоугольных импульсов. Ниже описывается генератор импульсов, выполненный всего на десяти микросхемах широко распространенной серии 155 и обладающий большими функциональными возможностями. Изготовление и наладка его доступны специалистам средней квалификации. Принципиальная схема генератора приведена на рис 1.а структурная на
рис.2. Генератор имеет два отдельных канала, формирования импульсов с
общим задающим генератором. Импульсы, у которых параметры (длительность,
полярность, сдвиг относительно задающей частоты) регулируются отдельно по
каждому каналу, снимаются с разных выходов:»Выход канала 1»-гнездо Х4 Амплитуда выходных импульсов постоянна и соответствует уровням ТТЛ- логики. В генераторе предусмотрены возможности внешнего допуска и синхронизация генератора разовых импульсов внешними сигналами. Имеется гнездо Х2 выхода задающих импульсов (Выход синхронизации). Сопротивление нагрузки должно быть не менее 200 Ом. Мощность потребляемая устройством от сети напряжением 220 В, не превышает 15 Вт. На рис. 3 приведены эпюры напряжений для установившегося режима работы генератора. Рассмотрим работы генератора. Импульсы прямоугольной формы поступают с задающего генератора 1(рис.2) на вход первого формирователя 2, а с него вход второго формирователя 3. Длительность выходных импульсов формирователей 2 и3 постоянна и не зависит от длительности входных импульсов. Эти одновибратор вырабатывают отрицательные импульсы длительностью 0,5 мкс на каждый положительный период напряжения на их входах. Такие импульсы в точке Д необходимы для обеспечения устойчивой работы одновибраторов 4 и 8, входные импульсы которых должны быть короче выходных. Регулируемые одновибраторы 4 и 8 на каждый отрицательный переход
напряжения на входе генерирует выходной импульс той же полярности. Установленные далее формирователи 5 и 9, аналогичны формирователю 2, вырабатывают отрицательные импульсы фиксированной длительности на каждый положительный переход напряжения на их входах, т.е. по заднем фронтом импульсов одновибраторов 4 и 8 соответственно. По каждому отрицательному переходу на своем входе регулируемые одновибраторы 6 и 10 генерируют отрицательные импульсы, длительность которых и определяется длительность выходных сигналов генератора. Таким образом, начало выходных импульсов с узлов 6 и 10 совпадает по времени с окончанием отрицательных импульсов с узлов 4 и 8 соответственно. Поэтому изменяя длительность последних, можно осуществлять сдвиг импульсов на выходах узлов 6 и 10, следовательно, на выходе генератора относительно импульсов с задающего генератора 1 (импульсов на выходе Х2). Коммутатор 11 осуществляет пропускание (с инвертированием) на вход генератора одиночных импульсов 12 импульсов с узлов 6 и 10. Коммутатор может также осуществлять логическое суммирование этих сигналов. Узел 12 пропускает либо все сигналы со своего входа на выход (с
инвертированием), либо только те, которые поступают на него между двумя
импульсами синхронизации после нажатия кнопки S 12 «Разовый импульс». На всех выходах генератора установлены мощные выходные каскады 7, 13- Для устранения возможных помех и поводок на плате с микросхемами
между плюсом питания и «землей» необходимо установить развязывающие
конденсаторы- один емкостью 1.0 мкф у разъемов платы и два три
непосредственно у микросхем из расчета по 0,002 мкф на каждую микросхему Рассмотрим работу отдельных узлов устройства. Задающий генератор 1 собран на логических элементах Д1.1, Д1.2, Д1.3 и транзисторе 1. Задающий генератор может работать в режиме внешнего запуска с гнезда Х1. Но сигналы эти должны соответствовать входным логическим уровням ТТЛ- элементов. В режиме внешнего запуска Цепь обратной связи разрывается, а вместо нее вход элемента Д1.1 переключателем S2 подается потенциал логической единицы. При работе устройство в режиме внутреннего запуска имеется возможность внешними сигналами срывать или разрешать (последнее -уровнем логической 1), генерацию импульсов, что иногда бывает необходимо при настройке логических устройств. Формирователь 2 собран на логическом элементе Д1.4 (аналогичны
формирователи 5 и 9-на элементах Д1.4 и Д4.3 соответственно). При
потенциале логического 0 на выходе формирователя (точка а) на выходе
элемента Д1.4 имеется напряжение ниже порового, а на выходе его (точка в)
логическая 1 (рис.4). Когда же напряжение в точке а изменяется на
логическую 1, то этот неположительный переход напряжения проходит через
конденсатор С3 и на выходе элемента Д1.4 получается логический 0. При изменении сигнала в точке а на логический 0 конденсатор С3
разряжается через выходное сопротивление элемента Д1.3 и диод V2,
включенный в прямом направлении. Этот диод служит для ускорения разряда
конденсатора С3 и для уменьшения отрицательных выбросов напряжения на входе Длительность выходных импульсов формирователя примерно равна tС3 R5. Формирователь 3 собран на элементах Д2.1 и Д2.2. Здесь длительность выходного импульса определяется временем разряда конденсатора С4. При входном сигнале, равном логическому 0 (точка в), конденсатор заряжается через выходное сопротивление элемента Д2.1 и резистор R6 (последний ограничивает ток заряда), и напряжение на входе элемента Д2.2 (точка 2), увеличивается (см. рис.6). Но так как на другом входе этого элемента имеется логический 0, то на выходе его- логическая 1. При изменении входного сигнала: на одном входе элемента Д2.2 логическая 1, а на другом напряжение уменьшается по мере разряда конденсатора С4 через выходное сопротивление элемента Д2.1 и резистор R6. Поэтому на выходе формирователя получается уровень логического 0, который вернется к логической 1, как только напряжение на конденсаторе (в точка г) уменьшается до порога переключения Uп логического элемента. Длительность выходного импульса примерно равна t=С4 (R6+20), где 20 Одновибраторы с транзистором 4 и 8 (см. рис.2) собраны соответственно на элементах Д2.3, Д2.4 и Д4.1, Д4.2. Они должны формировать импульсы большой длительности (до 1мс). В них используются эмиттерные повторители на транзисторах КТ315А (V4 и V7). Рассмотрим работу одновибратора 4. В начальный момент на его входе Когда в точке д установится потенциал логического 0, положительный
скачок напряжения с выхода элемента Д2.3 проходит через конденсатор С5 на
базу транзистора V4. На эмиттере транзистора напряжение тоже скачком
повышается и на выходе одновибратора получается потенциал логического 0,
который по цепи обратной связи поступает на вход элемента Д2.3 и
поддерживает его состояние с логической 1 на выходе и после окончания
входного сигнала (с элемента Д2.2). Конденсатор С5 при этом начинает
заряжаться основном через выходное сопротивление элемента Д2.3 и резисторы При длительности выходного импульса одновибратора tіТ (гдеТ- период
задающих импульсов, например в точке д) генератор может работать
неустойчиво и его выходная частота будет меньше частоты задающего
генератора 1. Для устранения примерно за 0,5 мкс до поступления
отрицательного импульса на вход одновибратора на вывод 12 элемента Д2.4
подается отрицательный импульс с выхода элемента Д1.4 (выход формирователя Iвых =bIвх - (Uип - Uвых)/Rк. Так как Iвх зависит от Краз управляющего элемента, выходную характеристику следует строить для различных значений Краз. Надо помнить, что одна нагрузка для управляющего элемента - рассматриваемый элемент . На участке 2 рис.2.2(г) выходной характеристики Iвых » Iвх . 2.6. Исследование основного элемента транзисторно-транзисторной логики Логика работы ТТЛ. На рис.2.6. (а) показано условное обозначение элемента Шеффера на
функциональных схемах , где х1 , х2, х3...хn- входы ; у- выход . 2.7. Расчет нагрузочной способности элемента ТТЛ Нагрузочная способность элемента определяется коэффициентом
разветвления Краз, характеризующим количество аналогичных элементов,
подключаемых к выходу данного элемента. На рис.2.6 (а) приведена схема для
определения Краз . Принимаем , что у транзистора UБЭнас = 0,7 В ; U Кэнас Cчитая все транзисторы идентичными, пренебрегаем объемным сопротивлением базы и коллектора. При включенном элементе на всех входах - напряжение U1вх , на выходе - напряжение U0вых . Для тока базы МЭТ IБМ=(Uип - Uбкм - UБЭнаст1 - UБЭнаст3) /R1; (1) I1КМ= Iбнас т1 =I1БМ(1+Кобbi) (2) где bi - инверсный коэффициент усиления по току для МЭТ Iк1 = (Uип - UБКМ - UБЭнаст1-UБЭнаст3)/R2 ; (3) IЭ1=Iк1+Iб1=(UМП -Uкэнаст1- - UБКМ-UБЭнаст1-UБЭнаст3)/R1(1+Кобbi); (4) IR3=UБЭнаст3/R3 ; (5) IБнасТ3 =IЭ1-IR3=(Uип-UКЭнасТ1-UБЭнасТ3)/R2+(Uип - UБКМ-UБЭнасТ3)/ R1 (1+Кобbi)- (UБЭнасТ3)/R3 (6) Ток коллектора насыщенного транзистора IкнасТ3=Iн=Краз I0вх=Краз[1+(КобN-1)bi]= Краз[(Uип-UБЭМ-UКЭнасТ3)]/R1[1+(КобN-1)bi] , (7) где IН1=IН2=...=I0вх=[1+(КобN-1)bi] (8) Коэффициент разветвления по выходу определим из условия IБнасТ3=КнасТ3 IкнасТ3/bmin . (9) Подставив (6) и (7) в (9) получим [pic][pic](10) Uuп = 1 к Ом, R4 = 150 Ом; [pic] (для МЭТ); Кнас = 1,5; [pic]; [pic] (для транзисторов Т1-Т3). После подстановки этих значений в (10) получим Краз = 38. В этом случае можно записать Краз = Ik max / I0вх (11) Приняв Ik max = 30мА, из (8) находим входной ток I0вх = 1,35 мА. 2.8. Выходная характеристика Выходная характеристика элемента ТТЛ- типа представляет собой
зависимость выходного напряжения, т.е. Iвых = f (Uвых). Выходная
характеристика снимается при отключенной нагрузке для двух состояний
элемента рис.(2.8. в ) (элемент включен, элемент выключен). Элемент выключен. При этом состоянии транзистор Т3 закрыт, на выходе
элемента напряжения U1 вых и хотя бы одном входе - напряжение U0 вх . В
процессе снятия выходной характеристики подключаем внешнее регулирование по
напряжению источника питания UИП = U вых , на выход элемента в точку у рис Элемент будет включен , если транзистор Т3 открыт, а транзистор Т2 и диод Д закрыт. Из рис. (2.8.е ) видно, что выходная характеристика включенного элемента совпадает с выходной характеристикой (ВАХ) транзистора Т3. На характеристике можно выделить ряд участков, характерных для режима работы транзистора Т3;участок 1 соответствует насыщенному режиму работы транзистора участок один соответствует насыщенному режиму работы транзистора Т3 ( при дальнейшем увеличении Uвых ); участок 2- активному режиму работы транзистора Т3 (при дальнейшем увеличении Uвых ); участок 3- инверсному активному режиму работы транзистора Т3 (при уменьшении напряжения, когда Uвых принимает отрицательные значения) : Элемент будет выключен, если транзистор Т3 закрыт, а транзистор Т2 и
диод Д открыты . На рис. (2.8.е ) можно выделить на характеристике ряд
участков , характерных для различных режимов работы транзистора Т2; участок 2.9. Методы оценки надежности Основной метод оценки надежности элементов цифровых приборов статический. В его основе находятся испытания партии изделий на срок службы. = n / (Nt) (1) Величину l-называют средней частотой или интенсивностью отказов. Зная величину l, можно оценить вероятность безотказной (исправной) работы элемента в течение заданного времени эксплуатации по формуле. Р = е -l t (2) Из (2) следует, что каким бы малым ни было значение l,с течением времени вероятность безотказной работы приближается к нулю. Среднем временем безотказной работы элемента (среднем сроком службы)
принято считать величину, получаемую из условия lt =1 tср = 1 / l (3) Многочисленными экспериментально- статистическими данными подтверждаются, что величина l не постоянная, она меняется с течением времени рис.2.9.1. Кривую зависимостью l=f(t) можно разделить на три участка: участка 1, на котором выявляются грубые ошибки при изготовлении элемента, загрязнении поверхности и др.; участок 2, на котором l = const, т.е. отказы обусловлены случайными, неконтролируемы причинами; участок 3, на котором l снова возрастает в результате неизбежного старения элементов, т.е. появления тех химических и физико-химических процессов, от которых неизбежна ни одна реальная структура и которые связаны с причинам действия элемента. Применительно к элементам ЦВМ и цифровых и цифро-аналоговых преобразователями такими принципиальными факторами являются взаимная диффузия, разнородных материалов, рациональные дефекты, обусловленные космическим излучением, и.т.п. Средний срок службы (3) соответствует границе между участками 2 и 3. Участок 1 обычно устраняется путем тренировки элементов. Тренировка элементов состоит в том, что после проведенных испытаний (механических, электрических, климатических и др.) элементы работают в течение нескольких десятков или сотен часов нормальных эксплуатационных условиях и отказавшие за это время элементы устраняется. В настоящее время интенсивность отказов элементов и БИС лежит в
пределах 10-8 - 10-9 1/ч. Для достоверной оценки величины l необходимо
при испытаниях "дождаться" хотя бы 2-3 отказов. Тогда из (1) при n =2ё3
следует, что время испытаний для партии N = 103 штук составит десятки лет. В таких случаях используется метод ускоренных испытаний, основанный на законе Аррениуса, согласно которому скорость J химических и физико- химических процессов связан с температурой экспоненциальной зависимостью вида J » е-( Wa / K)T где Wa - энергия активизации процесса. Отсюда следует, что средний срок службы изделия при повышенной температуре будет существенно меньше, чем при нормальной: ty = tн ехр [-(Wа / к) (TH-1 - T-1y) ], (4) где индексы "н", "у" относятся к нормальной и повышенной температуры. Проведя ускоренные испытания при повышенной температуре, фиксирует отказы изделия, добиваясь их появления за разумное время. Полученное значение lу пересчитывают к нормальной температуре с
помощью выражений (4) и (3). Используя, например для испытаний элементов Под такими методами понимаются индивидуальные исследования структуры готовых элементов цифровых устройств с целью выявления дефектов на возможность отказа, а также исследования отказавших элементов с целью выяснения причин отказа и выяснения соответствующих усовершенствований в технологию их производства. В отличие от статических методов, которые относятся к категории разрушающих (поскольку в их основе лежит отказ изделия), физические методы являются неразрушающими, а часто и бесконтактными. К их числу относятся тепло ведение (обследование в инфракрасных лучах), рентгеноскопия, электронная микроскопия, а также измерение избыточных шумов, которые характеризует качество контактов. Все перечисленные новые методы связаны с использованием сложного, дорогостоящего оборудования, по этому их нельзя считать установившимся в практике использования в широком плане. Однако, учитывая неприемлемость статических методов, они, по видимому, займут со временем ведущее место при оценке надежности элементов цифровых устройств, особенно БИС. Интенсивность отказов снимается с повышением степени интеграции,
поскольку производству БИС свойствен более высокий технологический уровень. Говоря о статическом методе оценки надежности, подразумевали, что результаты испытаний конкретной партии элементов ЦВМ и цифровых устройств в виде формулы (1) действительны для других, аналогичных партий. Однако это утверждение справедливо только в том случае, когда другие партии элементов изготовляются точно по той же технологии, что и испытанная партия. Отсюда следует важный вывод: Высокая надежность элементов ЦВМ обеспечивается в первую очередь стабильностью технологического цикла. Любое, даже прогрессивные, изменение технологического цикла может вызвать (хотя бы временное) снижение надежности элементов ЦВМ и цифровых устройств. Влияние температуры на статистические и динамические характеристики и параметры элементов. Изменение температуры окружающей среды влияет определенным на
статистические и динамические характеристики и параметры элементов. Так как с увеличением температуры происходит сдвиг характеристики в лево, то, помехоустойчивость элемента уменьшается. Также видно что повышением температуры возрастает уровень "0" U0вых и тд. На (рис.2.9.2.б) показано влияние температуры на выходную характеристику элемента И-НЕ Iвых= f(Uвых) транзисторно-транзисторной логики серии 133 и 155 для случаев, когда элемент включен и выключен. Из рисунка следует, что с повышением температуры возрастает соответствующие токи для заданных напряжений. На (рис.2.9.2.в) показан зависимость некоторых динамических параметров (задержки распространения сигнала при включении t1,0зд р и выключении t0,1зд р элемента)от температуры. Из зависимости следует что с ростом температуры t1,0зд р несколько
уменьшается, а время t0,1зд р наоборот, увеличивается. Указанные изменения
особенно заметен в диапазоне температур 20-1200С.
рис.2.9 2(а, б, в, г.) На (рис2.9.2.г) показаны зависимости некоторых динамических
параметров (t1,0зд р , t0,1зд р) от температуры для элемента ИЛИ-НЕ /ИЛИ Из анализа изложенного сделать вывод, что изменение температуры окружающей среды ухудшает статические и динамические параметры элементов цифровых устройств, что необходимо учитывать в процессе эксплуатации цифровых устройств. Табл.1. 3. Экономическая часть 1.Экономическая обоснованность выбранной темы. 2.Баланс рабочего времени. 3.Тарифные ставки действующих лиц. 4.Методики калькулирования себестоимости. Ограниченность схемы средств, которую заказчик может ассигновать на создание схемы управления объектом, заставляет его искать наиболее эффективный вариант решения наставленной задачи. А это предполагает необходимость сравнения того, во что обходится и что дает ему внедрение суммы управления. При внедрение систему управления производственным объектом ожидается,
что оно положительно скажется на показателе, характеризующем работу объекта Вопросы оценке экономической эффективности возникает при сравнении старой и проектируемой схемы управления для схемы управления для действующего объекта, пуле сравнении ряда вариантов решения для проектируемого и аналогичного действующего объектов. В случае же проектирования схемы управления для нового объекта. Не имеющего аналогов; следует считать общую народно хозяйственную эффективность от внедрения нового производства с современной схемой управления им без выделения эффективности собственно схемы управления. В качестве базы для расчета эффекта принимается показать производственно -хозяйственной деятельности объекта на год внедрения схемы управления . Если сравнивается несколько вариантов системы, обеспечивается их сопоставимость по всему комплектов учитываемы показателей, но используемым ценам, тарифам и.т.п. Затраты на создание и функционирование схемы управления складывается из едино временных (капитальных ) К и эксплуатационных DС. О методике расчета этих составляющих затрат будет говориться в следующим разделе экономической части. Оценки функционирования схемы в обобщенном виде выражается с помощью показателя суммы годовой экономии, о котором будет подробно рассматриваться в следующем расчетном разделе. Эта показатель оценивает результаты внедрения схемы. Для сравнения затрат и результатов используется показатели эффекта эффективности. Сумма годового экономического эффекта Э определяется как разность
суммы годовой экономии и затрат. Но достаточен ли размер эффекта, стоит ли
выкладывать определенную сумму средств на его достижение? Целесообразность
затрат средств на создание и функционирование схемы характеризуется
относительно показателем-эффективностью затрат. Различают общую Выбор одного из вариантов реализации системы можно произвести по формуле приведенных затраты, в основу которой положено сравнение сумм годовых эксплуатационных и капитальных расходов объекта в связи с внедрением каждого из и вариантов системы. Приведенные затраты для i-го варианта рассчитывается по формуле. Fi = (Ci+DCi)+Ki / Tн где DСi- сумма годовых эксплуатационных затрат; Сi+DCi- себестоимость годового выпуска продукции, производимой на объекте управления; Кi -капитальные затраты при создании системы управления; Тн -нормативный срок окупаемости капитальных затрат. Разработчик из n вариантов должен выбрать такой, при котором Fi достигает минимума. Обозначим через Э1i нижнюю границу суммы годового экономического эффекта, получаемого в результате внедрения схемы: Эi1 =Ki/Tн Так как Кi и Tн известен, то Э1i легко подсчитывается. Если создаваемая схема имеет эффект меньший Эi1, то ее использование с экономической точки зрения целесообразно. Процесс создания системы управления из нескольких стадий. Сначала заказчик или по его просьбе разработчик проводят серию научно исследовательских работ, в ходе которых определяются основные контуры будущего технического задания на проектирование схемы. Этот этап разработки, обычно называемый пред проектным, требует определенных затрат, которые можно назвать затратами на проведение научно исследовательских работ Знир. После окончания предпроектного этапа начинается этап, который может быть назван проектным. Результатом проектного этапа является выдача технического проекта на создание опытного образца будущей схемы. Затраты, возникающие при проведение проектного этапа будем обозначать как Зпр. Если технический проект будущей схемы принять заказчиком, то поступает этап изготовление опытного образца системы. Соответствующий этап называется этапом опытно-конструкторских работ. На этом этапе происходит изготовление опытного образца, испытание его
и внесение в его структуру изменений на основании проведенных испытаний. После этого наступает этап изготовления рабочего образца схемы, организации связи этой схемы с объектом управления, монтажа дополнительного оборудования, необходимого для функционирования схемы , и строительство помещений, в которых будет размешена схема. Затраты, возникающие на этом этапе, будем обозначать Зр. Все перечисленные виды затраты носят единовременный характер. К = Знир +Зпр +Зокр+Зр Затраты на НИР и проектирование могут быть несколько сокращены при
использовании имеющихся моделей и алгоритмов, типовых решений отдельных
узлов схемы, разработанных для схемы управления аналогичным объектом. В случае выявления возможности использование результатов данной
разработке для ряда других объектов управлении затраты на проведенные
научно исследовательские и проектно-конструкторские работы относят на
данный объект лишь частично, исходя из количество реальных объектов для
возможного использование. После того как рабочий образец схемы управления
изготовлен, наложен и начал нормально функционировать, возникает последний
этап в "в жизненном цикле" схемы. Система управления создана и работает. Экономические расчеты для схемы 1) Сырьё и материалы для реализации данного проекта 2) Основная заработная плата Т-число отработанных часов ; СТ- часовая тарифная ставка ; Зд=Зп *9.3% =3000*9.3/100=279 |№ |Статья калькуляции |сумма сом | 9)Цена на изделие определяется S=ZП/NТ=16202,4/21873,24=0.74 Технико-экономические показатели |№ |Наименование показателей |единица измерения |сумма | Калькуляция себестоимости продукции |№ |Статья калькуляции |Сумма | Охрана труда Охрана труда- это система законодательных актов и соответствующих им социально-экономических, технических, гигиенических и организационных мероприятий, обеспечивающих безопасность, сохранение здоровья и работоспособности человека в процессе труда. Техника безопасности - это система организационных и технических мероприятий и средств, предотвращающих воздействие на человека опасных производственных факторов, которые вызывают при нарушении правил безопасности несчастные случаи, травмы. Производственная санитария-эта система организационных, гигиенических и санитарно-технических мероприятий и средств, предотвращающих воздействие на работающих вредных производственных факторов, то есть факторов, вызывающих заболевания. Гигиенические нормативы на микроклимат Микроклимат в рабочей зоне определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температурой окружающих поверхностей. Повышение влажности затрудняет теплоотдачу организма путем испарения
при высокой температуре воздуха и способствует перегреву и наоборот,
усиливает теплоотдачу при низкой температуре, способствуя переохлаждению. Производственное помещение должно иметь не менее 15 м объема и 4,5 м площади на каждого работающего в нем. Высота производственных помещений от пола до потолка должен быть не менее 3,2м, а помещений энергетического и транспортно-складского хозяйства, если люди там находятся непостоянно, не менее 3м. Производственные процессы, сопровождающийся шумом или выделенным вредных веществ, нужно сосредоточить в отдельных помещениях. Полы нужно делать ровными нескользкими. Если полы холодные, у рабочих мест необходимо положить деревянные решетки или коврики. Для предотвращения сквозняков у наружных входов и въездов в производственные помещения следует делать тамбуры с самозакрывающимися дверями. Станки, верстаки нужно расставлять так чтобы между рабочими местами был проход шириной не менее 1м,не требовалось перемещать грузы грузоподъемными устройствами над рабочими местами. Действие не человека электромагнитных и ионизирующих излучений и защита от них Электромагнитные излучения различают по частоте колебаний или
длине волны. Наиболее длинные волны -это колебания промышленной или
другой звуковой частоты, а также ультразвуковые. Они имеют длину волны
выше 10 км (или частоту ниже 30 кГц ). Длинные и средние радиоволны (
от 10 км до 100 м или до 3 МГц) применяются не только в радиотехнике, но и
для заколки деталей и др. В промышленной электротермии используют для
нагрева диэлектриков также короткие радиоволны (100..10 м или до 30 Для защиты ВЧ и УВЧ создают экранирование местовым металлом высокой электропроводности толщиной не менее 0,5 мм. Длительное воздействие электромагнитных полей ВЧ и УВЧ напряженностью более допустимой может привезти к обратимым функциональным изменениям в печени, селезенки и в центральной нервной системе и пр. Рентгеновское излучение используется в установках промышленной рентгеноскопии. Оно излучается при испытании кабелей и электрооборудования выпрямленным током высокого напряжения. Гамма излучения испускается радиоактивным веществом. Оно имеет длину волны от 4 до 0,1 мм. Электрическая изоляция токоведущих частей с точки зрения электробезопасности. Электрическая изоляция токоведущих частей электроустановок от частей, находящихся под иным потенциалом, в том числе от земли, необходима не только для нормальной работы установки, но и для безопасности людей. Изоляция проводов и кабелей предотвращает прикосновение к их токоведущим жезлом. Кроме того, в электрический сети, питающейся от генератора или трансформатора с изолированной от земли обмоткой, через человека, прикоснувшегося к одной из токоведущих жил, течет тип меньшей ток, чем лучше изоляция двух других жил о земли. Если какой-либо точке любого провода произойдет повреждение изоляции, то возникающее электрические соединение с землей в сети с изолированной нейтралью называется однофазным замыканием на землю такое соединение с землей не является коротким замыканием, потому что на пути тока от провода с поврежденной изоляцией к токоведущим жилам проводов других фаз будет сопротивление этих двух проводов относительно земли. Ток однофазного замыкания в сети с изолированной нейтралью значительно меньше тока короткого замыкания между проводами или между проводами и землей в сети заземленной нейтралью. Если замыкание на землю произойдет через тело человека, то в сети с изолированной нейтралью ток через человека будет значительно меньше, чем в сети с заземленной нейтралью. В установках напряжением до 1000 В сети с изолированной нейтралью безопаснее сетей с заземленной нейтралью только при условии хорошей изоляции фаз относительно земли и сравнительно небольшой протяженности сети, так как чем длиннее провода, тем больше значение емкостных токов и токов утечки. Изоляции силовой или осветительной электропроводки считается достаточной, если ее сопротивление между проводом каждой фазы и землей, или между разными фазами на участке, ограниченном последовательно включенными установочными автоматами или плавкими предохранителями или за последним предохранителем составляет не менее 0,5 МОм (500 000 Ом). Действие электрического тока на организм человека Электрический удар характеризуется поражением всего организма в целом, что может привести к гибели человека. Характер электрических поражений зависит от физических параметров тока (его силы напряжения, частоты и т.д.), электрического сопротивления тела человека, продолжительности воздействия тока на человека и виды электрической цепи. Человек начинает ощущать протекающий через него ток промышленной частоты( 50 Гц) при относительно малом его значении: 0,6-1,5 мА. Защита от инфразвука и вибрации Инфразвук -область акустических колебаний с частотой ниже 16- При воздействии инфразвука на организм уровнем 110...150 дБ могут возникать неприятные субъективные ощущения и многочисленные реактивные изменения: сердечно-сосудистой и дыхательной системах, вестибулярном анализаторе. Гигиеническая регламентация инфразвука производится по санитарным нормам СН 2.2.4/2.1.8.583-96, которые задают предельно допустимые уровни звукового давления (УЗД) на рабочих местах для различных видов работ, а также в жилых и общественных помещениях. На людей может воздействовать ударная волна. Прямое воздействие возникает в результате воздействия избыточного давления и скоростного напора воздуха. Ввиду небольших размеров тела человека ударная волна мгновенно охватывает человека и подвергает его сильному сжатию в течение нескольких секунд. Мгновенное повышение давления воспринимается живым организмом как резкий удар. Защита от вибрации Линейные вибросистемы состоят из элементов массы упругости и демпфирования. В общем случае в системе действуют силы, инерции, трения, упругости вынуждающие . Сила инерции, как известно, равна произведению массы М на ее ускорение: F = M*dV/dt; где V-виброскорость. Сила F направлена в сторону, противоположную ускорению. При вибрации упругих систем происходит рассеяние энергии в окружающую среду, а также в материале упругих элементов и в узлах сочленения деталей конструкции. Эти потери вызываются силами трения - диссипативными силами, на преодоление которых непрерывно и необратимо расходуется энергия источника вибрации. Средства автоматического контроля Наличие контрольно-измерительных приборов - одно из условий безопасной и надежной работы оборудования. Это приборы для измерения деления, температур, статических и динамических нагрузок, концентраций паров и газов и др. Эффективность их использования повышается при объединении их с системами сигнализации, как это имеет место в газосигнализации, как это имеет место в газосигнализаторах, срабатывающих при определенных уровнях концентрации паров, газов, пыли в воздухе. Устройства автоматического контроля и сигнализации подразделяют : по назначению- на информационные, предупреждающие, аварийные и ответные; по способу срабатывания - на автоматические и полуавтоматические; по характеру сигнала- на звуковые, световые, цветовые, знаковые и комбинированные; по характеру подачи сигнала- на постоянные и пульсирующие. Нормирование шума Шум определяют как совокупность апериодических звуков различной интенсивности и частоты. Окружающие человека шумы имеют разную интенсивность: разговорная речь -50...60 дБА, автосирена-100дБА, шум двигателя легкового- 80дБА, громкая музыка-70дБА. Нормируемые параметры шума на рабочих местах определены ГОСТ Для ориентировочной оценки в качестве характеристики постоянного широкополосного шума на рабочих местах допускается принимать уровень звука (дБА), определяемый по шкале А шумомера с коррекцией низкочастотной составляющей по закону чувствительности органов слуха и приближением результатов объективных измерений к субъективному восприятию. Табл.1.Основные типы приборов для контроля требования Безопасности жизнедеятельности. Табл.2. Допустимые уровни звукового давления , уровни звука и эквивалентного уровня звука на рабочих местах в производственных помещениях и территории предприятий. |Рабочие места |Уровни звука, дБА в октавных |Уровни звука| Табл.3. Допустимые уровни звукового давления на рабочих местах. ЛИТЕРАТУРА Министерство образования, науки и культуры Кыргызской Республики ОШСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Кафедра: «Электроники и измерительной техники» Дипломный проект на тему: «Разработка генератора сигналов на цифровых микросхемах» Декан факультета ИТ к.т.н.доцент________________________________Жоробеков Б.А. Заведующий кафедрой ЭиИТ к.т.н.доцент________________________________Саримсаков А.А. Руководитель дипломного проекта ст.преп.каф.ІЭиИТІ ________________ Камилов А. Консультант дипломного проекта ст.преп.каф.ІЭиИТІ:________________________Орозов Р. Консультанты по экономической части ст.преп. кафедры «БУиА»:________________Мурзуибраимов Р.М. по охране труда зав. кафедрой БЖД:____________________________Жумабаев К. Дипломант студент группы ИИТТ-1-95_________________Маматова А. г.Ош-2000г. ОШСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра: «Электроники и измерительной техники» Утверждаю Зав.кафедрой « »_________2000г. З А Д А Н И Е по дипломному проекту студентки Маматова А. (фамилия, имя, отечество) ___________________________ задание: : задание выдал : принял Руководитель ___________________________________________________ (подпись) (подпись) КАЛЕНДАРНЫЙ ПЛАН |№ |Наименование этапов |Срок выполнения | | Студент - дипломник _____________________ Руководитель проекта_____________________ Введение Теоретическая часть Экономическая часть Расчетная часть |
|
© 2010 |
|