РУБРИКИ |
Синхронизация SDH сетей |
РЕКОМЕНДУЕМ |
|
Синхронизация SDH сетейСинхронизация SDH сетейМинистерство РФ по связи и информатизации Уральский Государственный Технический Университет - УПИ Кафедра "ТиСС" Отчет по производственной практике на ОАО «ЕГУЭС Уралтелеком» Руководитель практики от предприятия: Клубакова В.Г. Руководитель практики от УГТУ-УПИ: Время прохождения: с 2 августа по 30 сентября 2002 г. Студент: Ковязин Д. А. Группа: Р-407 Екатеринбург 2002 Содержание Содержание 2 Список сокращений Иностранные сокращения. ANSI  American National Standard Institute Американский национальный институт стандартов APS  Automatic Protection Switching  Автоматическое переключение ATM  Asynchronous Transfer Mode  Режим асинхронной передачи AD Administrative Unit Административный блок AUG  Administrative Unit Group  Группа административных блоков AU-PJE  AU Pointer Justification Event Смещение указателя AU BBE  Background block error Блок с фоновой ошибкой BBERBackground block error rate Коэффициент ошибок по блокам с фоновыми ошибками BER  Bit Error Rate Параметр ошибки по битам, равен отношению количества ошибочных битов к общему количеству переданных BIN  Binary Двоичное представление данных BIP Bit Interleaved Parity Метод контроля четности B-ISDN Broadband Integrated Service Digital  Широкополосная цифровая сеть с интеграцией Networks служб (Ш-ЦСИС) CRC Cyclic Redundancy Check Циклическая проверка по избыточности CRC ERR CRC errors Число ошибок CRC DEMUX Demultiplexer Демультиплексор ETS European Telecommunication Standard Европейский телекоммуникационный стандарт ETSI European Telecommunication Standard Institute Европейский институт стандартизации в теле-kоммуникациях, протокол ISDN, стандартизированный ETSI FEBE Far End Block Error Наличие блоковой ошибки на удаленном конце FERF Far End Receive Failure Наличие неисправности на удаленном конце HEX Hexagonal 16-ричное представление информации НО-РОН High-order POH Заголовок маршрута высокого уровня ISDN Integrated Service Digital Networks Цифровая сеть с интеграцией служб (ЦСИС) ITU International Telecommunication Union Международный Союз ITU-T International Telecommunication Union-Telephony group LO-POH Low-order POH Заголовок маршрута низкого уровня M1, М2 Management Interface 1, 2 Интерфейсы управления MSOH Multiplexer Section Overhead Заголовок мультиплексорной секции MSP Multiplex Section Protection Цепь резервирования мультиплексорной секции MUX Multiplexer Мультиплексор OSI Open System Interconnection Эталонная модель взаимодействия открытых систем РОН Path Overhead Заголовок маршрута PTR Pointer Указатель в системе SDH RGEN, REG Regenerator Регенератор RSOH Regenerative Section Overhead Заголовок регенераторной секции SDH Synchronous Digital Hierarchy Синхронная цифровая иерархия SDXC Synchronous Digital Cross Connect Синхронный цифровой коммутатор SOH Section Overhead Секционный заголовок STM Synchronous Transport Module Синхронный транспортный модуль - стандартный цифровой канал в системе SDH ТСМ Tandem Connection Monitoring Мониторинг взаимного соединения ТМ Traffic Management Управление графиком TMN Telecommunications Management Автоматизированная система управления связью TU Tributary Unit Блок нагрузки TUG Tributary Unit Group Группа блоков нагрузки VC Virtual Container Виртуальный контейнер Введение Стремительное развитие цифровых систем коммутации и средств передачи информации, внедрение технологий SDH привело к значительному возрастанию роли систем синхронизации в сетях телекоммуникации. Новые сферы применения и виды предоставляемых услуг также вызывают повышенные требования к характеристикам и работе сетей синхронизации. Точная работа и тщательное планирование систем синхронизации требуется не только для того, чтобы избежать неприемлемых рабочих характеристик, но чтобы ослабить скрытые, дорогостоящие и трудноопределимые проблемы и уменьшить малозаметные взаимные влияния сетей различного подчинения. Данный документ содержит основные сведения о тактовой сетевой синхронизации. В Разделе I рассмотрены основы синхронизации и доказывается необходимость синхронизации сетей. В качестве примеров приведены некоторые виды сбое, вызванные плохим качеством синхронизации, такие как проскальзывание, пропуски кадров и пучки ошибок. Обсуждается влияние этих сбое на качество предоставляемых услуг и различных применений. В разделе II описываются различные архитектуры построения сетей
синхронизации, используемые для поддержания приемлемого качества
синхронизации. В этом разделе рассмотрены первичные эталонные источники В разделе III рассмотрены рабочие характеристики тактовой сетевой синхронизации. Показано влияние первичных эталонных генераторов, средств передачи синхронизации и приемников тактовой синхронизации на рабочие характеристики. В этом разделе показано, что частота тактовой синхронизации приемников обычно отличается от частоты первичного эталонного генератора, к которому они подсоединены. Такой сдвиг по частоте оказывает огромное влияние на рабочие характеристики сетей синхронизации. Раздел IV раскрывает основные принципы планирования сетевой синхронизации. Также обсуждаются наиболее общие проблемы планирования сети. Необходимость синхронизации Основные положения Синхронизация – это средство поддержания работы всего цифрового оборудования в сети связи на одной средней скорости. Для цифровой передачи информация преобразуется в дискретные импульсы. При передаче этих импульсов через линии и узлы связи цифровой сети все ее компоненты должны синхронизироваться. Синхронизация должна существовать на трех уровнях: битовая синхронизация, синхронизация на уровне канальных интервалов (time slot) и кадровая синхронизация. Битовая синхронизация заключается в том, что передающий и принимающий концы линии передачи работают на одной тактовой частоте, поэтому биты считываются правильно. Для достижения битовой синхронизации приемник может получать свои тактовые импульсы с входящей линии. Битовая синхронизация включает такие проблемы как джиттер линии передачи и плотность единиц. Эти проблемы поднимаются при предъявлении требований к синхронизации и системам передачи. Синхронизация канального интервала (time slot) соединяет приемник и передатчик таким образом, чтобы канальные интервалы могли быть идентифицированы для извлечения данных. Это достигается путем использования фиксированного формата кадра для разделения байтов. Основными проблемами синхронизации на уровне канального интервала являются время изменения кадра и обнаружение потери кадра. Кадровая синхронизация вызвана необходимостью согласования по фазе
передатчика и приемника таким образом, чтобы можно было идентифицировать
начало кадра. Кадром в сигнале DS1 или Е1 является группа битов, состоящая
из 24 или 30 байтов (канальных интервалов) соответственно, и одного
импульса кадровой синхронизации. Время кадра равно 125 микросекундам. Тактовый генератор сети, расположенный в узле источника, управляет
частотой передачи через этот узел битов, кадров и канальных интервалов. Например, если оборудование, передающее информацию, работает на частоте, большей, чем частота принимающего оборудования, то приемник не может отслеживать поток информации. В этом случае приемник будет периодически пропускать часть передаваемой ему информации. Потеря информации называется проскальзыванием удаления. В случае, если приемник работает на частоте превышающей частоту передатчика, приемник будет дублировать информацию, продолжая работать на своей частоте и все еще осуществляя связь с передатчиком. Это дублирование информации называется проскальзыванием повторения. Для управления проскальзываниями в потоках DS1 и E1 используются специальные буферы (См. рис.1). Данные записываются в буфер принимающего оборудования с частотой первичного генератора, а считываются из буфера тактовой частотой принимающего оборудования. На практике могут применяться различные размеры буферов. Обычно буфер содержит более одного кадра. В этом случае принимающее оборудование при проскальзывании будет пропускать или повторять целый кадр. Это называется управляемым проскальзыванием. Рис. 1 – Буфер проскальзывания. Основной целью сетевой синхронизации является ограничение
возникновения управляемых проскальзыва- ний. Существуют две основных
причины возникновения проскальзываний. Первая причина-отсутствие частоты
синхронизации из-за потери связи между генераторами, приводящее к различию
тактовых частот. Вторая причина- разовые сдвиги либо в линиях связи (такие,
как джиттер и вандер), либо между первичным и ведомым генераторами. Проскальзывания, однако, не являются единственными сбоями, вызванными
отсутствием синхронизации. Плохая синхронизация в сетях SDH может привести
к избыточному джиттеру и потере кадров при передаче цифровых сигналов, как
изложено в разделе "Необходимость синхронизации SDH ". В корпоративных Влияние проскальзываний на предоставляемые услуги. Влияние одного или более проскальзываний на качество предоставляемых услуг в цифровых сетях связи зависит от типа этих услуг. Ниже описано влияние одиночных проскальзываний на различные виды услуг. При предоставлении услуг телефонной (голосовой) связи, как показано проскальзывания могут вызвать случайные звуковые щелчки. Эти щелчки не всегда слышны и не приводят к серьезным искажениям речи. Поэтому услуги телефонной связи некритичны к проскальзываниям. Частота появления проскальзываний до нескольких проскальзываний в минуту считается допустимой. Как показано на рис. 2, где рассматривается влияние управляемых проскальзываний на передачу факсимильных сообщений группы З, одиночные проскальзывания приводят к искажению или пропаданию строк в принятом факсимильном сообщении. Проскальзывание может вызвать пропадание до 8 сканированных линий. Это соответствует пропуску 0,08 дюйма вертикального пространства. На стандартной отпечатанной странице проскальзывание выглядит как отсутствие верхней или нижней половины отпечатанной строки. Длительное появление проскальзываний приведет к необходимости повторной передачи страниц, подвергшихся их влиянию. Повторная передача не может быть автоматизирована и осуществляется пользователем вручную. Влияние проскальзываний на передачу данных при помощи модемов проявляется в виде длинных пакетов ошибок. Продолжительность такого пакета ошибок зависит от скорости передачи данных и типа модема находится в диапазоне от 10 миллисекунд до 1,5 секунд. В период появления этих ошибок оконечное приемное устройство, подключенное к модему, принимает искаженные данные. В результате пользователь должен осуществить повторную передачу данных. При возникновении проскальзываний во время сеанса видеотелефонной связи происходит пропадание изображения. Абонентов просят повторно установить связь для восстановления изображения. Влияние проскальзываний на передачу цифровых данных зависит от используемого протокола. В протоколах, не предусматривающих возможности повторной передачи, возможны пропуски, повторения или искажения данных. Возможна потеря кадровой синхронизации, вызывающая искажения множества
кадров при возобновлении поступления импульсов кадровой синхронизации. При цифровой передаче изображений (например, видеоконференция), как
показывают тесты, приведенные ниже, проскальзывание обычно вызывает
искажение части изображения или его "замораживание" на время до 6 секунд. Наибольшее влияние проскальзывания оказывают при предоставлении услуг по передаче шифрованных данных. Проскальзывание приводит к потере ключа кодирования. Потеря ключа приводит к недоступности переданных данных до повторной передачи ключа и повторного осуществления связи. Поэтому вся связь останавливается. Что более важно, необходимость в ретрансляции ключа значительно влияет на безопасность. Для многих приложений, связанных с проблемами безопасности, число проскальзываний, превышающее 1 в день, считается неприемлемым. Необходимость синхронизации SDH. С появлением SDH к сетям синхронизации предъявляются новые
требования. SDH являются высокоскоростными синхронными транспортными
системами. Элементы сетей SDH требуют синхронизации, так как передаваемый
ими оптический сигнал является синхронным. Однако потеря синхронизации
сетевыми элементами SDH не приводят к возникновению проскальзываний. Это
обусловлено тем фактом, что рабочая нагрузка в SDH передается асинхронно. Рис. 2 - Выравнивание указателя. Однако, выравнивание указателя может привести к возникновению джиттера и вандера в передаваемом сигнале. Джиттер это быстрое (>10 Гц) изменение фазы сигнала («дрожание фазы»). Вандер - это медленное ( |
|
© 2010 |
|