![]() |
РУБРИКИ |
Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства |
РЕКОМЕНДУЕМ |
|
Диплом: Организация познавательной деятельности учащихся на факультативных занятиях по теме Иррациональные неравенства Теорема 15. Если - нечетное число, - положительно, а отрицательно, то Из предыдущего видно, что , а . Теорема 16. Если числа Действительно, если предположить, что , то возведя обе части неравенства в степень . получим придем к противоречию. Теорема 17. Если В самом деле, из Мы рассмотрели числовые неравенства. Пусть теперь нам даны две функции и между ними один из знаков неравенства (>,<, , условное неравенство. В дальнейшем такие условные неравенства мы будем называть просто неравенства. Областью определения или областью допустимых значений (ОДЗ) неравенства называется множество таких значений , при которых и функция , и функция определены. Иными словами, ОДЗ неравенства - это пересечение ОДЗ функции и ОДЗ функции Частным решением неравенства называется всякое удовлетворяющее ему значение переменной . Решением неравенства называется множество всех его частных решений. Два неравенства с одной переменной называются равносильными, если их решения совпадают (в частности, если оба неравенства не имеют решений). Если каждое частное решение неравенства является в то же время частным решением неравенства , полученного после преобразований неравенства , то неравенство называется следствием неравенства . В следующих теоремах речь идет о преобразованиях, приводящих к равносильным неравенствам. Теорема 18. Если к обеим частям неравенства прибавить одну и туже функцию определена при всех значениях из области определения исходного неравенства, и при этом оставить без изменения знак неравенства, то получится неравенство, равносильное исходному. Таким образом, неравенства и равносильны. Доказательство: Пусть = решение неравенства . Тогда числовое неравенство. Прибавим к обеим его частям число (по условию это число существует, ибо неравенства (1) и (2) имеют одну и ту же область определения. На основании свойства 6 числовых неравенств заключаем, что числовое неравенство - истинное. Следовательно, произвольное решение неравенства (1) является решением неравенства (2). Обратно, пусть произвольное решение неравенства (2), значит - истинное числовое неравенство. После вычитания из обеих частей этого неравенства числа по свойству 6 числовых неравенств получим истинное числовое неравенство . Итак, произвольное решение неравенства (1) является решением неравенства (2) и произвольное решение неравенства (2) является решением неравенства (1). Теорема доказана. Следствие. Неравенства и равносильны. Теорема 19. Если обе части неравенства умножить (или разделить) на одну и ту же функцию которая при всех значениях из области определения исходного неравенства принимает только положительные значения, и при этом оставить без изменения знак исходного неравенства, то получится неравенство, равносильное исходному. Таким образом, если и (или Доказательство: пусть произвольное решение неравенства (1). Тогда - истинное числовое неравенство. Умножим обе его части на число (по условию это число существует, ибо функция имеет смысл при всех из области определения неравенства (1), причем ). Н основании свойства 3 числовых неравенств заключаем. что числовое неравенство (2) тоже истинное при . Обратно, пусть произвольное решение неравенства (2), значит - истинное числовое неравенство. После деления обеих частей неравенства на число (по условию) по свойству 12 числовых неравенств получим истинное числовое неравенство Следствие. Если обе части неравенства умножить (или разделить) на одно и то же положительное число, сохраняя знак неравенства, то получится неравенство, равносильное данному. Теорема 20. Если обе части неравенства умножить (или разделить) на одну и ту же функцию которая при всех значениях из области определения исходного неравенства принимает только отрицательные значения, и при этом изменить на противоположный знак неравенства, то получится неравенство. равносильное исходному. Таким образом, если и (или Доказательство: Пусть произвольное решение неравенства (1). Тогда - истинное числовое неравенство. Умножим обе его части на число (по условию это число существует, ибо функция имеет решение при всех из области определения неравенства (1)). На основании свойства 4 числовых неравенств заключаем, что числовое неравенство тоже истинное. Обратно, пусть произвольное решение неравенства (2), значит -истинное числовое неравенство. Умножив обе части этого неравенства на число по свойству 4 числовых неравенств получим истинное числовое неравенство . Итак, произвольное решение неравенства (1) является решением неравенства (2) и произвольное решение неравенства (2) является решением неравенства (1). Теорема доказана. Следствие. Если обе части неравенства умножить (или разделить) на одно и тоже отрицательное число, изменив знак неравенства на противоположный, то получится неравенство, равносильное данному. Теорема 21. Пусть дано неравенство , причем при всех определения неравенства. Если обе части неравенства возвести в одну и ту же натуральную степень и при этом знак неравенства оставить без изменения, то получится неравенство равносильное данному. Доказательство: пусть - произвольное решение неравенства . Причем (по условию). Тогда - истинное числовое неравенство. Но по свойству 17 числовых неравенств получаем, что числовое неравенство тоже истинно. Что и требовалось доказать. Замечание. При выполнении тождественных преобразований возможно изменение области определения выражения. Например, при приведении подобных членов, при сокращении дроби может произойти расширение области определения. При решении неравенства в результате тождественных преобразований может получиться неравносильное неравенство. Поэтому после выполнения тождественных преобразований, которые привели к расширению области определения неравенства, из найденных решений нужно отобрать те, которые принадлежат области определения исходного неравенства. 3. Корень Определение. Корнем - й степени из действительного числа называется действительное число такое, что В частности, если , то из что . Если , то из что если , то по свойствам действительных чисел не существует действительных таких, что - четное, а существует ровно два действительных различных корня - й степени из Положительный корень обозначается через - арифметический корень - й степени из отрицательный Если существует единственный корень - й степени из число Если, для любого действительного числа |
|
© 2010 |
|