РУБРИКИ |
: Три кризиса в развитии математики |
РЕКОМЕНДУЕМ |
|
: Три кризиса в развитии математики: Три кризиса в развитии математикиÐÅÖÅÍÇÈß íà äèïëîìíóþ ðàáîòó ñòóäåíòà V êóðñà ôèçèêî-ìàòåìàòè÷åñêîãî ôàêóëüòåòà ÀÃÏÈ Áîëüøàêîâà À. À. íà òåìó: “Òðè êðèçèñà â ðàçâèòèè ìàòåìàòèêè” Ðàçâèòèå ìàòåìàòèêè íå îäíàæäû ïðèâîäèëî â ïðîøëîì ê íåîáõîäèìîñòè îñìûñëåíèÿ è ïåðåñòðîéêè å¸ îñíîâ. Äèïëîìíàÿ ðàáîòà Áîëüøàêîâà À. À. ïîñâÿùåíà îáçîðó òðåõ ïåðèîäîâ èíòåíñèâíûõ ïîèñêîâ ïóòåé ïðåîäîëåíèÿ íàêîïèâøèõñÿ âíóòðåííèõ ïðîòèâîðå÷èé: àíòè÷íûé ïåðèîä, ïåðèîä îáîñíîâàíèÿ àíàëèçà è òåîðåòèêî-ìíîæåñòâåííûé ïåðèîä.  ðàáîòå ïðèâîäèòñÿ ìíîãî èíòåðåñíûõ èñòîðè÷åñêèõ ñâåäåíèé. Ïîêàçàíû íåïðîñòûå ïóòè ôîðìèðîâàíèÿ íåêîòîðûõ îñíîâíûõ ìàòåìàòè÷åñêèõ ïîíÿòèé. Àâòîð ïîêàçûâàåò ãëóáîêîå ïðîíèêíîâåíèå â òåìó è õîðîøåå âëàäåíèå ìàòåðèàëîì. Äèïëîìíàÿ ðàáîòà Áîëüøàêîâà À. À. çàñëóæèâàåò âûñîêîé îöåíêè. Çàâåäóþùèé êàôåäðîé ìàòåìàòè÷åñêîãî àíàëèçà, êàíäèäàò ôèçèêî-ìàòåìàòè÷åñêèõ íàóê Çàõàðîâ Ñ. À. Ìèíèñòåðñòâî îáðàçîâàíèÿ Ðîññèéñêîé Ôåäåðàöèè Àñòðàõàíñêèé ïåäàãîãè÷åñêèé èíñòèòóò èì. Ñ. Ì. Êèðîâà Òðè êðèçèñà â ðàçâèòèè ìàòåìàòèêè ÄÈÏËÎÌÍÀß ÐÀÁÎÒÀ студента физико-математического факультета Большакова Александра Анатольевича Научный руководитель Ованесов Н. Г. Àñòðàõàíü · 96 Îãëàâëåíèå Ââåäåíèå I. Ñïîñîáû îáîñíîâàíèÿ ìàòåìàòèêè â äðåâíåé Ãðåöèè îò Ïèôàãîðà äî Åâêëèäà. 1. Ìàòåìàòèêà ïèôàãîðåéöåâ 2. Ïðîáëåìà áåñêîíå÷íîñòè â äðåâíåãðå÷åñêîé ôèëîñîôèè è ìàòåìàòèêå 3. Òðè çíàìåíèòûõ çàäà÷è äðåâíîñòè 4. Ïðåîäîëåíèå êðèçèñà îñíîâ äðåâíåãðå÷åñêîé ìàòåìàòèêè II. Ñïîñîáû îáîñíîâàíèÿ ìàòåìàòèêè â XVIII è â ïåðâîé ïîëîâèíå XIX âåêà 1. Îñîáåííîñòè ñïîñîáîâ îáîñíîâàíèÿ ìàòåìàòèêè â êîíöå XVII è â XVIII âåêå 2. Ðàçðàáîòêà ñïîñîáîâ îáîñíîâàíèÿ ìàòåìàòèêè â ïîñëåäíåé ÷åòâåðòè XVIII è ïåðâîé ïîëîâèíå XIX âåêà III. Ñïîñîáû îáîñíîâàíèÿ ìàòåìàòèêè â ïîñëåäíåé ÷åòâåðòè XIX âåêà è íà÷àëà XX âåêà 1. Òåîðèÿ ìíîæåñòâ. Îñíîâíûå ïîíÿòèÿ ó÷åíèÿ î ìíîæåñòâàõ Ã. Êàíòîðà 2. Òðóäíîñòè ïîñòðîåíèÿ òåîðèè ìíîæåñòâ. Êðèòèêà êîíöåïöèè Ã. Êàíòîðà 3. Ïàðàäîêñû (àíòèíîìèè) òåîðèè ìíîæåñòâ 4. Àêñèîìàòè÷åñêèå ïîñòðîåíèÿ òåîðèè ìíîæåñòâ ïî Öåðìåëî 5. Ïðîáëåìà ñóùåñòâîâàíèÿ â ìàòåìàòèêå Ñïèñîê ëèòåðàòóðû.
Введение Ñîçäàíèå íîâûõ è äàëüíåéøåå ðàçâèòèå ñóùåñòâóþùèõ ìàòåìàòè÷åñêèõ òåîðèé ñâÿçàíî îáû÷íî ñ óòî÷íåíèåì (îáîáùåíèåì) èõ èñõîäíûõ îñíîâíûõ ïîíÿòèé è ïîñûëîê è îñíîâàííûõ íà íèõ ìåòîäîâ. Ìàòåìàòèêè íåðåäêî âñòðå÷àëèñü ñ òðóäíîñòÿìè, ïðåîäîëåòü êîòîðûå èì óäàâàëîñü òîëüêî ïîñëå ïðîäîëæèòåëüíûõ ïîèñêîâ. Ýòè òðóäíîñòè ðîñòà ìàòåìàòèêè — òðóäíîñòè å¸ îáîñíîâàíèÿ: îíè áûëè, åñòü è áóäóò â äàëüíåéøåì. Òðóäíîñòè îáîñíîâàíèÿ ìàòåìàòèêè èãðàþò íàèáîëåå çíà÷èòåëüíóþ ðîëü â ðàçâèòèè ìàòåìàòèêè òîãäà, êîãäà âîçíèêàåò íåîáõîäèìîñòü â êîðåííîé ïåðåðàáîòêå îñíîâ è ìåòîäîëîãèè âñåõ (èëè äîñòàòî÷íî áîëüøîãî ÷èñëà) ìàòåìàòè÷åñêèõ òåîðèé.  ýòèõ ñëó÷àÿõ ãîâîðÿò î êðèçèñå îñíîâ ìàòåìàòèêè. Èçâåñòíû òðè òàêèõ êðèçèñà. Âïåðâûå êðèçèñ îñíîâ íàóê âîçíèê â ìàòåìàòèêå â äðåâíåé Ãðåöèè, â íà÷àëå å¸ ôîðìèðîâàíèÿ êàê íàó÷íîé ñèñòåìû. Âòîðîé èìåë ìåñòî â êîíöå XVII è â XVIII âåêå. Òðåòèé âîçíèê â êîíöå XIX âåêà, îí íå ïðåîäîëåí è â íàøå âðåìÿ è îêàçûâàåò âëèÿíèå íà ðàçâèòèå ñîâðåìåííîé ìàòåìàòèêè. Ìû ðàññìîòðèì ñóùíîñòü ýòèõ êðèçèñîâ ìàòåìàòèêè, èìåÿ â âèäó ïðåèìóùåñòâåííî ïîäòâåðæäåíèå âûâîäîâ, ñäåëàííûõ ðàíåå î çàêîíîìåðíîñòÿõ ðàçâèòèÿ ìàòåìàòèêè êàê òåîðèè. I. Способы обоснования математики в древней Греции от Пифагора до Евклида. 1. Математика пифагорейцевÌàòåìàòèêà êàê òåîðèÿ ïîëó÷èëà ðàçâèòèå â øêîëå Ïèôàãîðà (571–479 ãã. äî í. ý.). Ãëàâíîé çàñëóãîé ïèôàãîðåéöåâ â îáëàñòè íàóêè ÿâëÿåòñÿ ñóùåñòâåííîå ðàçâèòèå ìàòåìàòèêè êàê ïî ñîäåðæàíèþ, òàê è ïî ôîðìå. Ïî ñîäåðæàíèþ — îòêðûòèå íîâûõ ìàòåìàòè÷åñêèõ ôàêòîâ. Ïî ôîðìå — ïîñòðîåíèå ãåîìåòðèè è àðèôìåòèêè êàê òåîðåòè÷åñêèõ, äîêàçàòåëüíûõ íàóê, èçó÷àþùèõ ñâîéñòâà îòâëå÷åííûõ ïîíÿòèé î ÷èñëàõ è ãåîìåòðè÷åñêèõ ôîðìàõ. Äåäóêòèâíîå ïîñòðîåíèå ãåîìåòðèè ÿâèëîñü ìîùíûì ñòèìóëîì å¸ äàëüíåéøåãî ðîñòà. Ïèôàãîðåéöû ðàçâèëè è îáîñíîâàëè ïëàíèìåòðèþ ïðÿìîëèíåéíûõ ôèãóð: ó÷åíèå î ïàðàëëåëüíûõ ëèíèÿõ, òðåóãîëüíèêàõ, ÷åòûðåõóãîëüíèêàõ, ïðàâèëüíûõ ìíîãîóãîëüíèêàõ. Ïîëó÷èëà ðàçâèòèå ýëåìåíòàðíàÿ òåîðèÿ îêðóæíîñòè è êðóãà. Íàëè÷èå ó ïèôàãîðåéöåâ ó÷åíèÿ î ïàðàëåëüíûõ ëèíèÿõ ãîâîðèò î òîì, ÷òî îíè âëàäåëè ìåòîäîì äîêàçàòåëüñòâà îò ïðîòèâíîãî è âïåðâûå äîêàçàëè òåîðåìó î ñóììå óãëîâ òðåóãîëüíèêà. Âåðøèíîé äîñòèæåíèé ïèôàãîðåéöåâ â ïëàíèìåòðèè ÿâëÿåòñÿ äîêàçàòåëüñòâî òåîðåìû Ïèôàãîðà. Ïîñëåäíÿÿ çà ìíîãî ñòîëåòèé ðàíüøå áûëà ñôîðìóëèðîâàíà âàâèëîíñêèìè, êèòàéñêèìè è èíäèéñêèìè ó÷åíûìè, îäíàêî å¸ äîêàçàòåëüñòâî èì íå áûëî èçâåñòíî. Óñïåõè ïèôàãîðåéöåâ â ñòåðåîìåòðèè áûëè çíà÷èòåëüíûìè. Îíè çàíèìàëèñü èçó÷åíèåì ñâîéñòâ øàðà, îòêðûëè ïîñòðîåíèå ÷åòûðåõ ïðàâèëüíûõ ìíîãîóãîëüíèêîâ — òåòðàýäðà, êóáà, îêòàýäðà è äîäåêàýäðà (èêîñàýäð èññëåäîâàë âïîñëåäñòâèè Ãåýòåò). Îäíàêî îíè íå ñìîãëè îáîñíîâàòü óòâåðæäåíèÿ, îòíîñÿùèåñÿ ê îáúåìàì òåë (ïèðàìèäû, êîíóñà, öèëèíäðà è øàðà), õîòÿ, êîíå÷íî, ýòè óòâåðæäåíèÿ áûëè óñòàíîâëåíû ýìïèðè÷åñêè ìíîãî âåêîâ ðàíüøå. Íå çíàëè ïèôàãîðåéöû è îòíîøåíèÿ ïîâåðõíîñòè øàðà ê áîëüøîìó êðóãó.  îáëàñòè àðèôìåòèêè ïèôàãîðåéöû èçó÷àëè ñâîéñòâà ÷åòíûõ è íå÷åòíûõ, ïðîñòûõ è ñîñòàâíûõ íàòóðàëüíûõ ÷èñåë, èñêàëè ñîâåðøåííûå ÷èñëà, ò. å. òàêèå, êîòîðûå ðàâíû ñóììå âñåõ ñâîèõ äåëèòåëåé (íàïðèìåð, 6=1+2+3; 28=1+2+4+7+14). Ïî âèäèìîìó, îíè óñòàíîâèëè, ÷òî åñëè ÷èñëî 2ï–1 ÿâëÿåòñÿ ïðîñòûì, òî ÷èñëî 2ï–1´(2 ï–1) — ñîâåðøåííîå. Ïèôàãîðåéöû çíàëè òàêæå äðîáíûå ÷èñëà è â ýòîé ñâÿçè ðàçðàáîòàëè òåîðèþ àðèôìåòè÷åñêîé è ãåîìåòðè÷åñêîé ïðîïîðöèé. Îíè âëàäåëè ïîíÿòèÿìè ñðåäíåãî àðèôìåòè÷åñêîãî, ñðåäíåãî ãåîìåòðè÷åñêîãî è ñðåäíåãî ãàðìîíè÷åñêîãî. Êàê íè âåëèêè çàñëóãè ïèôàãîðåéöåâ â ðàçâèòèè ñîäåðæàíèÿ è ñèñòåìàòèçàöèè ãåîìåòðèè è àðèôìåòèêè, îäíàêî âñå îíè íå ìîãóò ñðàâíèòüñÿ ñî ñäåëàííûì èìè æå îòêðûòèåì íåñîèçìåðèìûõ âåëè÷èí. Ýòî îòêðûòèå ÿâèëîñü ïîâîðîòíûì ïóíêòîì â èñòîðèè àíòè÷íîé ìàòåìàòèêè. Ïî ïîâîäó ýòîãî îòêðûòèÿ Àðèñòîòåëü ãîâîðèë, ÷òî Ïèôàãîð ïîêàçàë, ÷òî åñëè áû äèàãîíàëü êâàäðàòà áûëà áû ñîèçìåðèìà ñ åãî ñòîðîíîé, òî ÷åòíîå ðàâíÿëîñü áû íå÷åòíîìó.
Ýòî çàìå÷àíèå Àðèñòîòåëÿ ÿñíî ïîêàçûâàåò, ÷òî ïðè äîêàçàòåëüñòâå íåñîèçìåðèìîñòè äèàãîíàëè êâàäðàòà ñ åãî ñòîðîíîé Ïèôàãîð èñïîëüçîâàë ìåòîä îò ïðîòèâíîãî (ðèñ. 1). Ïóñòü, äåéñòâèòåëüíî, äèàãîíàëü À ñîèçìåðèìà ñî ñòîðîíîé ÀÑ êâàäðàòà ÀÑÂÄ. Òîãäà , ãäå ð è q — íàòóðàëüíûå ÷èñëà. Äðîáü ìîæíî ñ÷èòàòü íåñîêðàòèìîé (èíà÷å å¸ ìîæíî áûëî áû ñîêðàòèòü); çíà÷èò, ð èëè q áóäåò ÷èñëîì íå÷åòíûì. Ïðèìåì ÀÑ=1. Ïî òåîðåìå Ïèôàãîðà äîëæíî áûòü: ; Çíà÷èò , ò. å. ð2 äåëèòñÿ íàöåëî íà 2; ñëåäîâàòåëüíî è ð òàêæå äåëèòñÿ íàöåëî íà 2: ð=2ð1, ãäå ð1 — íåêîòîðîå íàòóðàëüíîå ÷èñëî. Àíàëîãè÷íî ïîëó÷àåì: q=2q1, ãäå q1 òàêæå íåêîòîðîå íàòóðàëüíîå ÷èñëî. Èòàê, ð è q — îáà ÷åòíûå ÷èñëà. Ïîñêîëüêó ð èëè q — ÷èñëî íå÷åòíîå, âûõîäèò, ÷òî ÷åòíîå ÷èñëî ðàâíî íå÷åòíîìó ÷èñëó.  êîíöå V âåêà äî í. ý. Ôåîäîð èç Êèðåíû óñòàíîâèë, ÷òî íåñîèçìåðèìîñòü äèàãîíàëè êâàäðàòà ñ åãî ñòîðîíîé íå ÿâëÿåòñÿ èñêëþ÷åíèåì. Îí ïîêàçàë, ÷òî ñòîðîíû êâàäðàòîâ, ïëîùàäè êîòîðûõ ðàâíû 3, 5, 6, ., 17 íåñîèçìåðèìû ñî ñòîðîíîé åäèíè÷íîãî êâàäðàòà. Ïèôàãîð ó÷èë, ÷òî ñóùíîñòü âñåõ âåùåé åñòü ÷èñëî; ÷èñëî — ñàìè âåùè; ãàðìîíèÿ ÷èñåë — ãàðìîíèÿ ñàìèõ âåùåé. Àðèñòîòåëü ãîâîðèë, ÷òî ó ïèôàãîðåéöåâ ÷èñëà ïðèíèìàëèñü çà íà÷àëî è â êà÷åñòâå ìàòåðèè è â êà÷åñòâå [âûðàæåíèÿ äëÿ] èõ ñîñòîÿíèÿ è ñâîéñòâ. Îòêðûòèå íåñîèçìåðèìûõ âåëè÷èí ñíà÷àëà “âûçâàëî óäèâëåíèå” (Àðèñòîòåëü). Ýòî åñòåñòâåííî: äî îòêðûòèÿ Ïèôàãîðà äðåâíåãðå÷åñêèå ìàòåìàòèêè ñ÷èòàëè, ÷òî ëþáûå äâà îòðåçêà èìåþò îáùóþ ìåðó, õîòÿ, ìîæåò áûòü, è î÷åíü ìàëóþ. Êîãäà, îäíàêî, ïèôàãîðåéöû óáåäèëèñü, ÷òî äîêàçàòåëüñòâî ñóùåñòâîâàíèÿ íåñîèçìåðèìûõ âåëè÷èí áåçóïðå÷íî, îíè ïîíÿëè, ÷òî èõ ôèëîñîôèÿ îêàçàëàñü â çàòðóäíèòåëüíîì ïîëîæåíèè. Ïèôàãîðåéöû çíàëè òîëüêî ïîëîæèòåëüíûå öåëûå è äðîáíûå ÷èñëà. Ñëåäóÿ ñâîåé ôèëîñîôñêîé óñòàíîâêå, îíè, ïî ñóòè äåëà, ñ÷èòàëè, ÷òî êàæäàÿ âåùü ìîæåò áûòü îõàðàêòåðèçîâàíà ïîëîæèòåëüíûì öåëûì èëè äðîáíûì ÷èñëîì, êîòîðîå |
|
© 2010 |
|