РУБРИКИ

: Литература - Другое (книга по генетике)

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

: Литература - Другое (книга по генетике)

условиях одинаковые по величине двухнитевые молекулы ДНК,

отличающиеся по нуклеотидной последовательности, денатуриру-

ют по -разному . Разработан компьютерный алгоритм, позволяю-

щий предсказывать характер плавления в зависимости от нукле-

отидной последовательности (Lerman, Silverstein, 1987). При

электрофорезе амплифицированных двухнитевых фрагментов ДНК в

геле с линейно возрастающим градиентом концентраций денату-

рирующих агентов плавление нитей ДНК происходит в строго

специфичной для данной последовательности области, эквива-

лентной температуре плавления - tm, то есть такой температу-

ре, при которой каждая пара оснований с 50%-ой вероятностью

может соединиться или разойтись. После начала плавления

продвижение двухнитевого фрагмента ДНК в геле резко замедля-

ется вследствие сложной пространственной конфигурации моле-

кул, причем эта задержка будет длиться до тех пор, пока не

наступит полная денатурация ДНК. В результате происходит

разделение фрагментов ДНК, различающихся по нуклеотидному

составу. Таким способом удается идентифицировать лишь около

50% однонуклеотидных замен в фрагментах ДНК длиной от 50 до

нескольких сотен нуклеотидов. Связано это с тем, что при

прохождении ДНК через гель может начаться частичная денату-

рация концов молекул еще до достижения оптимальной области

плавления. Поэтому мутации, локализованные вблизи концов ам-

плифицированных участков ДНК, оказывают меньшее влияние на

процесс плавления и поэтому могут не выявляться. Эффектив-

ность обнаружения мутаций с помощью градиентного денатуриру-

ющего электрофореза может быть существенно повышена за счет

присоединения к концам амплифицированной геномной ДНК синте-

тических фрагментов GC-нуклеотидов, длиной в несколько

десятков пар оснований. Такие монотонные тугоплавкие концы

выполняют роль своеобразных зажимов и резко увеличивают

шансы обнаружения для всех точечных мутаций, независимо от

их локализации внутри исследуемого фрагмента ДНК. Эта моди-

фикация делает метод очень чувствительным (см.Таб.4.2). В

отличии от SSCP он пригоден для более крупных амплифициро-

ванных фрагментов ДНК. При исследовании фрагментов до 600

п.о. эффективность выявления мутаций этим методом достигает

95%. Чаще всего DGGE -метод применяется для скрининга мута-

ций в амплифицированных экзонах, при этом в качестве матрицы

используют геномную ДНК. Этот метод может быть с успехом

применен также для анализа индуцированных мутаций, так как

позволяет улавливать точечные мутации, возникшие даже в од-

ной из 100 обработанных мутагеном клеток. К недостаткам ме-

тода следует отнести техническую сложность получения равно-

мерного градиента денатурирующего агента в полиакриламидном

геле, а также высокую стоимость искусственно синтезированных

GC-концов.

HA (Неteroduplex analysis) - гетеродуплексный анализ поз-

воляет идентифицировать мутации, находящиеся в компаунде или

в гетерозиготном состоянии. Следует заметить, что у подавля-

ющего большинства пациентов с генными болезнями, наследуемы-

ми по аутосомно-рецессивному типу, мутации в гомологичных

хромосомах находятся в компаунде, то есть в каждом из гомо-

логичных генов имеются функционально значимые нарушения, но

их молекулярная природа и внутригенная локализация различны.

Исключение составляют лишь мажорные мутации, частота которых

в популяции достигает десятков процентов. Примерами таких

мутаций являются ^F508 в гене муковисцидоза или R408W мута-

ция в гене фенилкетонурии. Принцип HA-метода заключается в

том, что при амплификации относительно небольших фрагментов

генов гетерозигот или гомозиготных компаундов мутация может

быть локализована лишь в одной из гомологичных нитей матрич-

ной ДНК. Поэтому в амплификационной смеси наряду с двумя ти-

пами гомодуплексов образуются гетеродуплексы между нормаль-

ной и мутантной цепочками ДНК. Такие гетеродуплексные моле-

кулы ДНК имеют иную электрофоретичеcкую подвижность по срав-

нению с гомодуплексами (не отличающимися между собой по под-

вижности) за счет конформационных особенностей в местах

несовпадения нуклеотидов (mismatch) (Рис.4.6). Эти различия

могут быть обнаружены при электрофорезе в обычном полиакри-

ламидном геле. Значительно более эффективное разделение гомо-

и гетеродуплексов может быть достигнуто при использовании

новых вариантов гелей - Hydrolink либо MDE. Вероятность

идентификации точечных мутаций этим способом на фрагментах

ДНК менее 300 п.о. достигает 80-90%. Детекция мутаций осу-

ществляется как изотопным, так и неизотопными методами

(Grompe, 1993).

CMC (Chemical Mismatch Cleavage) - метод химического

расщепления некомплементарных сайтов, основан на способности

некоторых химических агентов специфически разрывать нить ДНК

в месте локализации неспаренного основания (Рис.4.7). Так,

цитозин чувствителен к действию гидроксиламина, а тимин - к

действию тетроксида осмия. Некоторые модификации метода

используют чувствительность тимина и гуанина к карбодиимиду.

Последующая обработка пиперидином приводит к полному разрыву

молекулы ДНК в модифицированном сайте. Выявление мутаций

осуществляют с помощью меченых ДНК-зондов, соответствующих,

как правило, нормальным вариантам последовательности ДНК.

Такими зондами могут быть синтезированные олигонуклеотиды,

клонированные последовательности ДНК или амплифицированные

фрагменты (Cotton, 1990; Cotton, Malcolm, 1991).

При проведении исследования эталонную меченую ДНК сме-

шивают с избытком тестируемой ДНК (или РНК). Тестируемыми

образцами ДНК могут служить клонированные ДНК, обработанные

соответствующими эндонуклеазами, либо амплифицированные

фрагменты. Смесь нагревают до полной денатурации двухнитевых

молекул и затем охлаждают, чтобы создать условия для образо-

вания дуплексов. При наличии мутаций в тестируемых образцах

ДНК в гетеродуплексах, возникших в результате гибридизации

между однонитевыми молекулами эталонной и тестируемой ДНК,

образуются места негомологичного спаривания. После обработки

соответствующими химическими агентами идентификация и лока-

лизация мутантных сайтов в исследуемых участках ДНК прово-

дится путем электрофореза и авторадиографии. Появление уко-

роченных фрагментов ДНК на электрофореграмме (а точнее нео-

бычных бэндов в нижней части геля) свидетельствует о наличии

мутантного сайта, а определение размера укороченных фрагмен-

тов однозначно определяет локализацию этого сайта в исходной

тестируемой молекуле ДНК. Современные модификации метода

CMC позволяют идентифицировать до 95-100% мутаций

(Grompe,1993). Большими преимуществами этого метода являются:

(1) возможность исследовать протяженные участки ДНК - до 2

кб, (2) способность одновременно выявить и локализовать

несколько мутаций в одном фрагменте ДНК и (3) возможность

одновременно использовать несколько ДНК-зондов для поиска

мутаций - мультиплексный вариант методики. К числу недостат-

ков можно отнести высокую токсичность используемых хими-

ческих реактивов. Последняя может быть частично ослаблена

использованием карбодиимида для идентификации GT гетеродуп-

лексов.

Весьма близким по принципу к CMC- методу является метод

расщепления гетеродуплексов РНКазой А. С этой целью созда-

ются условия для образования гетеродуплексов между тестируе-

мой ДНК и комплементарной ей радиоактивно меченой РНК про-

бой. При обработке РНКазой А происходит разрезание молекул

РНК в местах нарушения спаривания оснований. Места точечных

мутаций определяются как и в случае СМС, по размерам образо-

вавшихся фрагментов после электрофореза и авторадиграфии.

Необходимость использования радиоактивно меченой РНК- пробы

и возможность детекции только около 50% точечных мутаций ли-

митируют широкое применение метода (Grompe, 1993).

Первичная идентификация мутаций может быть осуществлена

путем анализа нарушений не в нуклеотидной последовательности

гена, а в аминокислотной последовательности соответствующего

полипептидного продукта. Для этого выделяют тотальную мРНК

из лейкоцитов крови, проводят обратную транскрипцию, ампли-

фицировуют специфические экзоны кДНК (метод RT-PCR), встраи-

вают амплифицированную область ДНК в экспрессионную систему

и анализируют образовавшийся продукт. Этот метод особенно

эффективен при детекции мутаций в протяженных генах, содер-

жащих большое число экзонов, таких как ген миопатии Дюшенна

или ген нейрофиброматоза 1.

Раздел 4.6. Молекулярное сканирование известных мутаций.

Рассмотренные выше методы обнаружения мутаций предпола-

гают обязательное секвенирование содержащих их сегментов ДНК

с целью точной идентификации нуклеотидных нарушений, оценки

их фенотипического проявления и определения причастности к

развитию болезни. Поэтому они редко используются в практи-

ческой диагностике и при популяционном скрининге гетерози-

гот. После описания мутации появляется возможность ее анали-

за более простыми способами, не требующими секвенирования.

Как упоминалось выше, мутации, изменяющие длину амплифициро-

ванных фрагментов, могут быть выявлены с помощью нативного

электрофореза в полиакриламидном или агарозном гелях.

Из миссенс мутаций наиболее просто диагностируются те

замены нуклеотидов, которые приводят к исчезновению или об-

разованию сайта узнавания для какой-нибудь из рестриктаз.

Они выявляются по изменению длины амплифицированного фраг-

мента ДНК после его обработки соответствующей эндонуклеазой.

Поэтому сразу после идентификации мутации проводится компь-

ютерный поиск возможных сайтов рестрикции в месте локализа-

ции замены основания. Вероятность такого события довольно

велика, так как для каждой из нескольких сотен известных в

настоящее время рестрикционных эндонуклеаз сайтом узнавания

служит своя специфическая последовательность ДНК, средние

размеры которой составляют 5 - 6 нуклеотидов.

Если естественных рестрикционных сайтов в месте мутации

найти не удается, то такие сайты могут быть созданы

искусственно. В частности, разработана методика создания с

помощью ПЦР новых сайтов рестрикции в мутантных аллелях, но

не в аллелях дикого типа - метод ПЦР-опосредованного

сайт-направленного мутагенеза ( Ng et al., 1991; Eiken et

al.,1991). Для этого амплифицируемый участок ДНК выбирают

таким образом, чтобы 3'-конец одного из праймеров непосред-

ственно примыкал к мутантному сайту (Рис.4.8). Именно этот

праймер неполностью комплементарен матричной ДНК. В нем из-

меняют один из нуклеотидов с 3'-конца так, чтобы в сочетании

с нуклеотидом мутантного, но не нормального сайта в этом

месте образовывался сайт рестрикции для какой-нибудь из эн-

донуклеаз. Тогда после рестрикции и электрофореза продуктов

амплификации геномной ДНК у индивидуумов, не содержащих дан-

ную мутацию, на электрофореграмме будет присутствовать один

нерестрицированный фрагмент, у гетерозигот появится два до-

полнительных фрагмента, соответствующих по длине рестрициро-

ванным сегментам ДНК, и у гомозигот по мутации будут

присутствовать только эти два фрагмента.

Концептуально близким к этому варианту является метод

получивший название "амплификация рефрактерной мутационной

системы"- amplification refractory mutation system - ARMS. В

основе метода лежит неспособность Taq1 термофильной полиме-

разы к амплификации фрагмента при наличии несоответствия

(mismatch) между матричной ДНК и 3'-концом одного из олигоп-

раймеров (Newton et al.,1989; Bottema et al.,1990 ). Суть

метода заключается в оновременном проведении двух ПЦР, для

каждой из которых одним из праймеров служит аллель-специфи-

ческая мутантная или нормальная олигонуклеотидная последова-

тельность, соответственно. При этом в качестве второго прай-

мера для проведения двух реакций выбирают одну и ту же оли-

гонуклеотидную последовательность, так что в обоих случаях

могут амплифицироваться участки ДНК одинаковой протяжен-

ности.Мутантный сайт в аллель-специфических праймерах распо-

ложен не в центре, а ближе к 3'-концу, и чаще всего занимает

предпоследнюю позицию. При определенных условиях, важнейшим

из которых является концентрация ионов магния в растворе,

наличие сайта негомологичного спаривания в 3'-области прай-

мера препятствует началу синтеза ДНК. Таким образом, при на-

личии мутации в исследуемой матричной ДНК амплифицированные

фрагменты образуются только в том случае, если в качестве

аллель-специфического праймера выбирается мутантная последо-

вательность, тогда как при использовании нормального олиго-

нуклеотидного праймера ПЦР блокируется (Рис.4.9.). Метод на-

шел широкое применение для детекции мутаций при фенилкетону-

рии, бета-талассемии, муковисцидозе, при типировании генов

HLA системы. Однако, сложности в подборе праймеров и в выбо-

ре оптимального режима ПЦР ограничивают широкое применение

этого метода. Вместе с тем, его несомненным преимуществом

является возможность применения полностью автоматического

сканирования.

Таким же преимуществом обладают и методы детекции

состояния гена, основанные на лигировании синтетических оли-

гонуклеотидных зондов- OLA (oligonucleotide ligation assay).

При проведении этих реакций специфические ДНК или РНК после-

довательности исследуют путем использования их в качестве

матрицы для ковалентного связывания двух пар олигонуклеотид-

ных зондов (Landegren,1993). ДНК-зонды для лигирования под-

бирают таким образом, чтобы они были полностью комплементар-

ны нормальному фрагменту ДНК в области локализации мутации,

причем сама нуклеотидная замена должна находиться на стыке

двух праймеров. Обычно в один из зондов вводят радиоактивную

или флюоресцентную метку, а другой - метят биотином. После

гибридизации при строго стандартных условиях синтезированные

олигонуклеотидные последовательности сшивают ДНК-лигазами из

термофильных микроорганизмов. Такие ферменты работают при

высоких температурах и сохраняют свою активность в условиях,

необходимых для проведения денатурации молекул ДНК. При на-

личии мутации в тестируемой молекуле ДНК на конце одного из

зондов образуется сайт некомплементарного спаривания, не-

посредственно примыкающий к месту лигирования. Наличие тер-

минального неспаренного основания в смежно расположенных

последовательностях ДНК-зондов резко снижает скорость лиги-

рования и при определенных условиях проведения реакции сшив-

ки между зондами в этом случае не происходит. Метод включает

несколько последовательных циклов гибридизации, лигирования

и денатурации. Начиная со второго цикла, матричной ДНК для

гибридизации зондов наряду с тестируемой пробой служат также

лигированные последовательности. В дальнейшем проводят

электрофоретический анализ меченых однонитевых фрагментов

ДНК. Система успешно апробирована на мутациях глобиновых ге-

нов при серповидно-клеточной анемии и на мутации delF508 при

муковисцидозе.

Универсальным методом детекции замен оснований является

метод аллель-специфических олигонуклеотидов - ASO, который

включает амплификацию фрагментов ДНК и последующую дот- или

слот-гибридизацию с мечеными аллель-специфическими олигонук-

леотидами (Reiss, 1991). Для этого синтезируют два типа оли-

гонуклеотидных последовательностей обычно размером 19 пар

оснований, в которых мутантный сайт занимает центральное по-

ложение. Каждый из этих олигонуклеотидных зондов комплемен-

тарен нормальному или мутантному вариантам ДНК, соот-

ветственно. Условия гибридизации подбирают таким образом,

чтобы дуплексы образовывались только при полной комплемен-

тарности гибридных пар. В этих условиях амплифицированные

фрагменты ДНК без мутации будут гибридизоваться только с

нормальным зондом, ДНК гомозигот по мутации - только с му-

тантным и ДНК гетерозигот - с обоими олигонуклеотидами

(Рис.4.10). Для уменьшения перекрестной аллель-специфической

гибридизации в реакционную смесь добавляют 30-кратный избы-

ток конкурентного немеченого олигонуклеотидного ДНК-зонда.

Разработаны удобные модификации метода ASO с использованием

аллель-специфических ДНК-зондов, меченых биотином или пе-

роксидазой хрена (Лебедева и др.,1994).

Наиболее быстрым, экономичным и удобным методом скани-

рования точечных мутаций является модифицированный вариант

ASO, так называемая гибридизационная система обратного

дот-блота (reverse dot-blot hybridisation system) (Saiki

et.al.,1989). Метод позволяет одновременно скринировать сра-

зу много точечных мутаций и доступен автоматизации

(Chebab, 1993). В этом случае проводят гибридизацию меченых

продуктов ПЦР, обычно представляющих собой отдельные экзоны,

с фиксированными на нейлоновых фильтрах аллель-специфически-

ми олигонуклеотидными зондами (ASO). Предварительную иммоби-

лизацию мутантных и нормальных ASO-зондов на мембранах осу-

ществляют за счет присоединения гомополимерных T-хвостов с

дезоксирибонуклеотид-трансферазой на конце. При этом олиго-

нуклеотидные последовательности остаются свободными и могут

участвовать в гибридизации с мечеными амплифицированными

фрагментами ДНК. После отмывки несвязавшихся молекул ДНК ра-

диоавтографические или цветные пятна на фильтрах становятся

заметными только в местах локализации олигонуклеотидов, пол-

ностью комплементарных тестируемой геномной ДНК. Реакцию,

обычно проводят в присутствии ионов тетра-алкиламмония,

уменьшающих зависимость температуры плавления от композиции

оснований. Это позволяет использовать одинаковые условия

гибридизации для различных олигонуклеотидов, то есть вести

поиск сразу нескольких типов мутаций, локализованных в одном

и том же экзоне гена. Данный метод положен в основу разра-

ботки специальных систем, предназначенных для одновременной

детекции наиболее распространенных мутаций в исследуемом ге-

не. Система представляет собой ленточный фильтр (стрип) с

нанесенными пятнами олигопраймеров, каждый из которых соот-

ветствует определенной мутации. Стрип помещают в раствор со

смесью тех меченых амплифицированных экзонов, которые могут

содержать тестируемые мутантные аллели и создают условия для

аллель-специфифческой гибридизации. Таким способом сканируют

одновренно 42 мутации, ответственные за серповидноклеточную

анеми, 34 мутации при муковисцидозе (Сhebab,1993)

Очень простой метод обнаружения и идентификации

описанных ранее мутаций в амплифицированных фрагментах ДНК

основан на анализе характера электрофоретического разделения

продуктов ПЦР в MDE-гидросвязывающих гелях в присутствии

высоких концентраций мочевины. Эти гели способствуют форми-

рованию гетеродуплексов в процессе электрофореза, причем

расположение дуплексов очень специфично для различных му-

тантных аллелей, локализованных в одном и том же амплифици-

рованном фрагменте. Это позволяет не только выявлять, но с

высокой степенью вероятности идентифицировать известные му-

тации. В мультиплексном варианте методики возможен одновре-

менный поиск мутаций в нескольких амплифицированных фрагмен-

тах. Простота и высокая скорость анализа способствуют разра-

ботке на основе разделения в MDE-гелях схем максимальной ав-

томатизации процесса поиска и идентификации известных мута-

ций у пациентов и гетерозиготных носителей мутаций

Итак, методы выявления мутаций довольно разнообразны и

постоянно совершенствуются. В первую очередь, молекулярному

анализу подвергают те гены, повреждения которых сопровожда-

ются развитием наиболее частых заболеваний. Исследования

проводят либо в семьях высокого риска, где уже имеются боль-

ные с тем или иным моногенным заболеванием с целью выявления

гетерозиготных носителей, либо непосредственно в популяциях,

где имеется большая выборка больных и можно предполагать

высокую частоту гетерозиготных носителей мутаций. При этом

выбор конкретных схем идентификации мутантных аллелей, за-

частую, определяется диагностическими возможностями лабора-

торий и стоимостью анализов. Особое внимание уделяют поиску

тех аллелей, которые встречаются в популяциях с высокой

частотой. Именно для таких мутаций разрабатывают более

простые и эффективные методы молекулярной диагностики, поз-

воляющие тестировать больных и проводить скрининг гетерози-

гот среди их родственников или среди определенных групп

населения.

Важнейшей характеристикой мутантного аллеля является

его корреляция с тяжестью течения заболевания, то есть фе-

нотипическое выражение мутации в гомозиготном и в гетерози-

готном состоянии, а также в компаунде с другими мутантными

аллелями того же гена. Для многих моногенных болезней обна-

ружено большое число аллелей, которые по своему клиническо-

му проявлению могут быть подразделены на различные группы,

от очень мягких, оказывающих незначительный повреждающий

эффект, до летальных или полулетальных, обусловливающих

смерть пациентов в раннем возрасте. Таким образом, молеку-

лярная диагностика мутаций может иметь определяющее значе-

ние для прогнозирования развития заболевания и выбора адек-

ватной тактики лечения. Подобные скринирующие программы в

настоящее время разработаны и успешно осуществляются во

многих странах для таких распространенных заболеваний как

серповидноклеточная анемия, муковисцидоз (Rene et

al.,1994). Реализация этих программ наряду с большой меди-

цинской пользой приносит и массу социальных проблем, неко-

торые из которых будут рассмотрены ниже.

ВВЕДЕНИЕ В МОЛЕКУЛЯРНУЮ ДИАГНОСТИКУ И ГЕНОТЕРАПИЮ

НАСЛЕДСТВЕННЫХ БОЛЕЗНЕЙ.

В.Н.Горбунова, В.С.Баранов

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ.

ГЛАВА I. СТРУКТУРА И МЕТОДЫ АНАЛИЗА ДНК.

Раздел 1.1 Общие представления, центральная догма, гене-

тический код.

Раздел 1.2 Выделение ДНК, ее синтез и рестрикция.

Раздел 1.3 Блот-гибридизация по Саузерну, гибридизация

in situ.

Раздел 1.4 ДНК-зонды, клонирование, векторные системы.

Раздел 1.5 Геномные и к-ДНК-овые библиотеки генов, их

скрининг.

Раздел 1.6 Секвенирование последовательностей ДНК.

Раздел 1.7 Полимеразная цепная реакция.

ГЛАВА II. ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.

Раздел 2.1 Определение генома и его основных элементов.

Раздел 2.2 Повторяющиеся последовательности ДНК.

Раздел 2.3 Мультигенные семейства, псевдогены, онкоге-

ны.

Раздел 2.4 Современное определение понятия "ген",

транскрипция, регуляторные элементы генов.

Раздел 2.5 Изменчивость генома, полиморфные сайты рест-

рикции, ПДРФ-анализ.

Раздел 2.6 Вариабильные микро- и минисателлитные ДНК.

Раздел 2.7 Мобильность генома, облигатные и факультатив-

ные элементы генома.

Раздел 2.8 Изохоры, метилирование, гиперчувствительные

сайты.

ГЛАВА III. ГЕНЕТИЧЕСКИЕ КАРТЫ, ПОЗИЦИОННОЕ КЛОНИРОВАНИЕ.

Раздел 3.1 Классификация генетических карт, оценка

сцепления.

Раздел 3.2 Соматическая гибридизация, цитогенетический

анализ, картирование анонимных последова-

тельностей ДНК.

Раздел 3.3 Генетические индексные маркеры.

Раздел 3.4 Хромосом-срецифические библиотеки генов,

пульсирующий гель-электрофорез.

Раздел 3.5 Позиционное клонирование, прогулка и прыжки

по хромосоме, идентификация и изоляция ге-

нов.

Раздел 3.6 Каталог генов и генных болезней МакКьюсика.

Международная программа "Геном человека".

ГЛАВА IY. ТИПЫ И НОМЕНКЛАТУРА МУТАЦИЙ. МЕТОДЫ ДНК-

ДИАГНОСТИКИ.

Раздел 4.1 Мутантные аллели, характеристика и типы му-

таций.

Раздел 4.2 Генетическая гетерогенность наследственных

заболеваний.

Раздел 4.3 Номенклатура мутаций.

Раздел 4.4 Идентификация структурных мутаций, изоляция

мутантных ДНК.

Раздел 4.5 Первичная идентификация точечных мутаций.

Раздел 4.6 Молекулярное сканирование известных мутаций.

ГЛАВА Y. ПОПУЛЯЦИОННЫЙ АНАЛИЗ МУТАЦИЙ. ЭНДОГЕННЫЕ

МЕХАНИЗМЫ СПОНТАННОГО МУТАГЕНЕЗА.

Раздел 5.1 Популяционный анализ мутаций, полиморфизм,

неравновесность по сцеплению.

Раздел 5.2 Частоты спонтанного мутагенеза.

Раздел 5.3 Эндогенные механизмы возникновения мутаций.

Раздел 5.4 Механизмы поддержания и распространения му-

таций в популяциях.

ГЛАВА YI. ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ЭКСПРЕССИИ ГЕНОВ.

Раздел 6.1 Дифференциальная активность генов, выбор

адекватных биологических моделей.

Раздел 6.2 Анализ регуляторных элементов гена, изоляция

и исследование мРНК, искусственные

транскрипционные системы.

Раздел 6.3 Анализ трансляции, ДНК-экспрессионные систе-

мы.

ГЛАВА VII. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ПРЕНАТАЛЬНОЙ

ДИАГНОСТИКИ НАСЛЕДСТВЕННЫХ БОЛЕЗНЕЙ.

Раздел 7.1 Прямые и косвенные методы молекулярной диаг-

ностики.

Раздел 7.2 ДНК-диагностика при различных типах наследо-

вания.

Раздел 7.3 Группы риска, поиск гетерозиготных носите-

лей мутаций.

Раздел 7.4 Особенности применения молекулярных методов

в пренатальной диагностике моногенных болез-

ней.

Раздел 7.5 Доимплантационная диагностика, общая схема

пренатальной диагностики, точность прогнози-

рования.

ГЛАВА YIII. БИОЛОГИЧЕСКИЕ МОДЕЛИ НАСЛЕДСТВЕННЫХ БОЛЕЗНЕЙ

ЧЕЛОВЕКА.

Раздел 8.1 Генетические линии животных.

Раздел 8.2 Трансгенные животные.

Раздел 8.3 Экспериментальное моделирование.

Раздел 8.4 Конструирование модельных генетических ли-

ний животных.

Раздел 8.5 Методы направленного переноса генов.

ГЛАВА IX. ГЕННАЯ ТЕРАПИЯ.

Раздел 9.1 Определение, историческая справка, программы

генной терапии.

Раздел 9.2 Типы генотерапевтических вмешательств, выбор

клеток-мишеней.

Раздел 9.3 Методы генетической трансфекции в генной те-

рапии.

Раздел 9.4 Конструирование векторных систем и совер-

шенствование методов трансформации клеток че-

ловека.

9.4.1 Основные векторные системы.

9.4.2 Методы физического переноса чужеродной ДНК в

клетки эукариот.

9.4.3 Липосомный метод трансфекции.

9.4.4 Рекомбинантные вирусы.

9.4.5 Перспективы создания "идеальных" векторных

систем.

Раздел 9.5 Генотерапия моногенных наследственных заболе-

ваний.

Раздел 9.6 Генотерапия ненаследственных заболеваний:

опухоли, инфекции.

Раздел 9.7 Некоторые этические и социальные проблемы ген-

ной терапии.

ГЛАВА X. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА НЕКОТОРЫХ

МОНОГЕННЫХ ЗАБОЛЕВАНИЙ.

Раздел 10.1 Хромосомная локализация и принципы класси-

фикации генов наследственных болезней.

Раздел 10.2 Метаболические дефекты лизосомных фермен-

тов. Болезни накопления.

Раздел 10.3 Болезни экспансии, вызванные "динамически-

ми" мутациями.

Раздел 10.4 Моногенные наследственные болезни, диаг-

ностируемые молекулярными методами в России.

10.4.1 Муковисцидоз.

10.4.2 Миодистрофия Дюшенна.

10.4.3 Гемофилия А.

10.4.4 Гемофилия B.

10.4.5 Болезнь Виллебранда.

10.4.6 Фенилкетонурия.

10.4.7 Синдром Леш-Нихана.

10.4.8 Болезнь Вильсона-Коновалова.

10.4.9 Адрено-генитальный синдром.

10.4.10 Спинальная мышечная атрофия.

10.4.11 Атаксия Фридрейха.

ЗАКЛЮЧЕНИЕ.

ГЛАВА Y.

ПОПУЛЯЦИОННЫЙ АНАЛИЗ МУТАЦИЙ. МЕХАНИЗМЫ СПОНТАННОГО

МУТАГЕНЕЗА.

Раздел 5.1 Полиморфизм, неравновесность по сцеплению.

Молекулярная идентификация мутантных аллелей и разра-

ботка эффективных методов их диагностики у больных и у гете-

розиготных носителей являются той экспериментальной базой,

которая позволяет исследовать распространенность мутаций в

различных этнических группах и популяциях. Одновременно воз-

можен анализ сцепления мутантных аллелей с другими генети-

ческими маркерами и оценка на этой основе предполагаемых ме-

ханизмов возникновения и поддержания в популяциях наблюдае-

мого уровня изменчивости. Но прежде чем перейти к описанию

основных целей и методов популяционного анализа мутаций оп-

ределим более точно два основных понятия, часто используемых

при проведении подобных исследованиях - это понятия полимор-

физма и неравновесности по сцеплению.

Генетическая изменчивость локуса в определенной попу-

ляции измеряется уровнем полиморфизма, и количественным вы-

ражением этой меры служат частоты аллелей. В однолокусной

двухаллельной системе частоты двух вариантов аллелей - А1 и

А2, обозначаются буквами p и q, соответвственно, и (p+q=1).

Когда мы говорим, что в популяции существует полиморфизм по

мутации, это значит, что ее частота выше определенного выб-

ранного в соответствии с какими-то причинами условного уров-

ня, чаще всего выше 5%. Высокополиморфными считаются локусы

с близкими значениями частот аллелей. В больших популяциях

со случайным характером скрещивания, то есть в панмикти-

ческих популяциях, действует закон Харди-Вайнберга, согласно

которому частоты гомозиготных особей в популяции равны p!2 и

q!2, соответстенно, а доля гетерозигот равна 2pq. Таким об-

разом, в двухаллельной модели частота гетерозигот в популя-

ции по полиморфным локусам составляет от 10% и более, а по

высокополиморфным локусам может достигать 50%. Если число

аллелей в локусе больше двух, общая частота гетерозигот в

популяции равна 1 - (p1!2 + p2!2 + ... + pn!2), где pk -

частота аллеля Ak, k = 1, 2, ... n и p1 + p2 +... + pn = 1.

При этом доля гетерозигот в популяции возрастает с увеличе-

нием числа аллелей и достигает максимального предела в каж-

дой группе из n аллелей при равенстве их частот. Таким обра-

зом, при увеличении числа аллелей, встречающихся с равными

вероятностями, частота гетерозигот в популяции будет стре-

миться к единице, то есть подовляющее число особей в популя-

ции будут гетерозиготными по данному локусу. Такая ситуация

характерна для высокополиморфных микросателитных повторов, в

частности STR, что и делает их наряду с другими преимущест-

вами наиболее удобными генетическими маркерами.

Как мы уже упоминали, частыми моногенными наследствен-

ными заболеваниями считаются такие, при которых один больной

ребенок встречается среди 2000 - 10000 новорожденных, то

есть q!2 колеблется в пределах 1 /2000 - 1/10000. Соот-

ветственно, частота мутаций - q, в этих генах составляет от

0.5% до 2.5% и доля гетерозиготных носителей - 2pq, достига-

ет 1% - 5%. Для более редких заболеваний частоты гетерозигот

не превышают десятых долей процента. Тем ни менее, если

учесть, что общее количество различных моногенных заболева-

ний составляет около 5000 нозологий, оказывается, что, в

среднем, каждый человек является носителем мутантных аллелей

около десяти генов. В общем случае, набор этих генов разли-

чен у разных людей, и только в тех семьях, где оба родителя

являются носителями мутаций одного и того же гена появляется

25%-ый риск рождения больного ребенка.

До сих пор мы рассматривали изменчивость в одном локусе

- A. Понятие неравновесности по сцеплению определяет отноше-

ния между изменчивостью в двух локусах - A и B. Ситуация

здесь может быть двоякой. Если изменчивость в этих локусах

независима, то аллели двух локусов встречаются в популяции в

случайных комбинациях. Однако, если аллели различных локусов

в одних комбинациях встречаются чаще, чем в других, то гово-

рят, что существует неравновесность по сцеплению. Количест-

венно эта связь оценивается с помощью детерминанта неравно-

весности по сцеплению - d. Рассмотрим, чему равен детерми-

нант неравновесности по сцеплению в двухлокусной двухаллель-

ной системе. Пусть Pnm, где n=1,2 и m=1,2, частоты четырех

возможных в этом случае типов гамет - A1B1, A2B2, A1B2,

A2B1, а Pn и Rm - частоты аллелей локусов A и B, соот-

ветственно. Если сочетания аллелей в гаметах случайны, то

теоретически ожидаемые частоты гамет четырех типов равны

произведению частот входящих в эти гаметы аллелей, то есть

Pnm=Pn*Rm. В этом случае произведение частот двух типов га-

мет (A1B1 и A2B2), находящихся в состоянии "притяжения",

равно произведению частот гамет в состоянии "отталкивания"

(A1B2 и A2B1), то есть P11*P22 = P1*P2 *R1*R2 = P12*P21. Од-

нако, если сочетания аллелей в гаметах неслучайны, то эти

произведения различны. Их разность служит мерой неравно-

весности по сцеплению - d. Итак d = ¦P11*P22 - P12*P21¦ При

отсутствии неравновесности по сцеплению d = 0. Верхняя гра-

ница d = 0.25. Максимальная неравновесность по сцеплению

достигается при полном отсутствии двух типов гамет, находя-

щихся либо в состоянии "притяжения", либо в состоянии "от-

талкивания", при одновременном равенстве частот оставшихся

двух типов гамет.

Мутации в различных локусах возникают, как правило, не-

зависимо друг от друга и наличие неравновесности по сцепле-

нию, по-видимому, отражает тот факт, что мутация в одном из

локусов возникла в хромосоме, несущей определенный аллель

другого локуса, и далее эта хромосома получила распростране-

ние в популяции. Неравновесность по сцеплению является очень

важной популяционной характеристикой, позволяющей судить о

порядке и примерном времени возникновения различных мутаций,

а также оценивать возможные механизмы их поддержания в попу-

ляции. Обнаружение сильной неравновесности по сцеплению меж-

ду специфическими мутациями гена и определенными аллелями

маркерных локусов имеет важное практическое значение. Часто

наблюдается неравновесность по сцеплению между мутантными

аллелями гена и одновременно несколькими маркерными локуса-

ми. В этом случае анализ маркерных гаплотипов, то есть набо-

ров аллелей различных локусов, локализованных в одной хро-

мосоме, дает возможность с высокой степенью вероятности оце-

нивать характер мутационного повреждения и прослеживать его

наследование в семьях больного.

Раздел 5.3 Частоты спонтанного мутагенеза.

Считается, что средняя частота спонтанного возникнове-

ния мутаций в структурных локусах человека колеблется в пре-

делах от 10(-5) до 10(-6) на одну гамету за каждое поколе-

ние. Однако, эта величина может значительно варьировать для

разных генов, меняясь в пределах от 10(-4) для высокомута-

бильных локусов до 10 (-11) в наиболее устойчивых частях ге-

нома. Эти различия зависят от многих факторов и, в первую

очередь, от характера мутационного повреждения, от механизма

возникновения мутации и локализации нарушения. Большое зна-

чение также имеет сам ген, протяженность его кодирующих об-

ластей и те функции, которые выполняют контролируемые им мо-

лекулы в обеспечении жизнедеятельности клеток и всего орга-

низиа, в целом. Так например, нарушение работы генов, про-

дукция которых необходима на ранних стадиях эмбриогенеза,

может приводить к гибели плода. Такие мутации трудны для ди-

агностики и в практической медицине мы чаще всего имеем дело

только с теми мутациями, которые не проявляют летального эф-

фекта на ранних стадиях эмбрионального развития. Тем ни ме-

нее, не исключено, что ранние эмбриональные летали составля-

ет немалый процент среди мутантных аллелей различных генов и

вносят определенный вклад в снижение репродуктивной функции.

Особого внимания заслуживает проблема мутирования в

STR-сайтах и в VNTR- локусах, часто используемых в настоящее

время для геномной дактилоскопии и молекулярной диагностики.

Эти участки генома, изменчивость в которых обусловлена раз-

личиями в числе тандемных повторов, формально можно отнести

к разряду высокомутабильных. Заметим сразу, однако, что пря-

мое сопоставление темпов мутирования в кодирующих областях

генома и в мини- и микросателлитных последовательностях ДНК,

по-видимому, некорректно, так как физическая основа изменчи-

вости, наблюдаемой в этих функционально и структурно разли-

чающихся локусах совершенно различна. Мутабильность в

STR-сайтах обусловлена нестабильностью числа повторов, при-

чем возникающие мутации затрагивают, как правило, лишь весь-

ма ограниченное число кластерированных копий, чаще всего 1

или 2. Подобные тандемные повторы редко наблюдаются в

смысловых последовательностях ДНК. Исключение составляют

лишь мутации экспансии, но и для них характерно (1) сущест-

вование большого числа аллелей дикого типа, отличающихся

друг от друга небольшим числом копий, и (2) значительные

различия по длине повторяющегося участка между нормальными и

мутантными вариантами гена. Кроме того, изменчивость в

STR-сайтах в основе своей носит нейтральный характер и пото-

му темп мутирования в этих локусах не подвержен жесткому

контролю со стороны естественного отбора.

Прямые исследования показали, что в большинстве случаев

частота возникновения спонтанных мутаций в микросателлитных

STR -сайтах варьирует в пределах от 0.1% до 0.45% на гамету,

что должно учитываться при использовании этих маркеров в

практической медицине. Частота мутирования в вариабильных

(C-A)n -повторах, используемых в качестве индексных маркеров

в Genethon - картах сцепления составляет 0.05% на гамету.

Показано, что для ряда VNTR-локусов (MSB2) частота мутирова-

ния достигает 0.7% на гамету. Для других локусов (М17) обна-

ружено достоверное превышение скорости мутагенеза в зароды-

шевых клетках по сравнению с соматическими. Для многих

достаточно стабильных STR-локусов обнаружены существенные

межпопуляционные различия по частоте аллелей, что позволяет

использовать эту изменчивость для генетической характеристи-

ки отдельных популяций. В то же время другие STR-сайты зна-

чительно чаще подвергаются спонтанному мутированию, что при-

водит к уравновешиванию паттерна аллелей и делает эти марке-

ры малопригодными для популяционных исследований. Имеются

данные, что в наиболее вариабильных STR-локусах частота

спонтанных мутаций может достигать 5% на гамету за поколение

(Jeffreys et al., 1988).

Раздел 5.3. Эндогенные механизмы возникновения мутаций.

Основную часть мутаций, ведущих к наследственным болез-

ням, составляют точечные мутации, делеции и в меньшей степе-

ни инсерции и дупликации. При этом, как показывает детальный

сравнительный анализ, частота, тип и локализация этих мута-

ций отнюдь неслучайны и зависят от многих, пока еще невы-

ясненных эндогенных механизмов мутагенеза. В пользу такого

вывода свидетельствует уникальный характер спектра мутаций

для каждого из многих десятков генов, первичная структура

ДНК и типы мутаций которых уже хорошо изучены. Так, для мно-

гих структурных генов доминирующими по спектру и частоте яв-

ляются точечные мутации (ген трансмембранного регуляторного

белка муковисцидоза, ген фенилаланингидроксилазы, ген факто-

ра IX cвертывания крови, бета-глобиновый ген и мн др.), тог-

да как для других - достаточно протяженные структурные пе-

рестройки типа делеций, дупликаций и инсерций (гены дистро-

фина, фактора VIII свертывания крови, 21-гидроксилазы)

(см.Главу X). К структурным факторам, определяющим эндоген-

ные механизмы мутагенеза, можно отнести (1) наличие прямых и

обратных повторов и симметричных элементов вблизи места пе-

рестройки; (2) высокую концентрация СpG динуклеотидов; (3)

наличие внегенных последовательностей ДНК, гомологичных

фрагментам структурного гена; (4) мобильные элементы генома.

Естественно, что реализация этих структурных факторов в те

или иные типы мутаций возможна лишь в процессе репликации

(1,2) и рекомбинации (3) ДНК хромосом.

Как подробно рассмотрено в серии работ D.N Cooper и

M.Кrawczak (1990, 1991), наличие в первичной структуре ДНК

прямых повторов, идентичных повторяющихся последователь-

ностей, инвертированных повторов, шпилечных структур, квази-

палиндромных последовательностей и симметричных элементов

генома (например CTGAAGTC) нередко ведет к образованию пе-

тель при репликации ДНК вследствие скользящего нарушения

спаривания (slipping mispairing) родительской и дочерней це-

пей ДНК. Эти новые структурные элементы ДНК либо уничтожа-

ются ферментами системы репарации, что ведет к делециям, ли-

бо сохраняются и дублируются, что приводит к дупликациям и

инсерциям, при этом возникшие изменения закрепляются при

последующих раундах репликации. Авторы приходят к следующим

выводам: (1) возникновение подобных мутаций происходит

неслучайно, но зависит от особенностей первичной структуры

ДНК в месте перестройки; (2) в основе структурных перестроек

ДНК лежат ошибки репликации; (3) принципиально сходные моде-

ли эндогенного мутагенеза характерны как для делеций, так и

для инсерций. Считается, что именно механизм скользящего на-

рушения спаривания ответственен за мутации экспансии, приво-

дящие к быстрому увеличению числа тринуклеотидных повторов и

к нарушению работы соответствующих генов, а также за высокую

изменчивость, наблюдаемую во многих местах локализации мини-

и микросателлтных тандемных повторов.

Недавно показано, что повышенной эндогенной мутаген-

ностью обладают вообще все последовательности ДНК, находящи-

еся в определенном конформационном состоянии, а именно в

состоянии изгиба (bent DNA) (Milot et al.,1992). Известно,

что такая конформационная структура ДНК свойственна промо-

торным частям генов, местам начала репликации (origins of

replication), местам контакта хромосом с ядерным матриксом.

Именно эти участки ДНК являются местами посадки ферментов

топоизомераз, вовлеченных в процессы репликации, транскрип-

ции, рекобинации, в том числе, как оказалось, и в процесс

негомологичной (незаконной -illegitimate) рекомбнации. Уста-

новлено, что именно негомологичная рекомбинация может приво-

дить не только к внутригенным делециям, дупликациям и другим

мутациям на молекулярном уровне, но и является одной из

основных причин крупных структурных хромосомных перестроек

типа транслокаций, инверсий и других.

Замены или утраты отдельных оснований в геномной ДНК

могут возникать в результате нарушения процессов репликации

и репарации. Ошибки в ДНК матрице, вызванные действием пов-

реждающих внешних агентов, либо спонтанной деградацией осно-

ваний закрепляются в последующих циклах репликации. Основные

типы спонтанной деградации включают потерю оснований и про-

цесс дезаминирования. Особенно чувствительны к дезаминирова-

нию цитозиновые остатки. Установлено, что у позвоночных поч-

ти половина всех цитозиновых остатков в ДНК метилирована в

5-ом положении. Процесс метилирования особенно часто захва-

тывает области повторов 5'CpG 3', расположенные как внутри

генов, так и в их промоторных частях. При дезаминировании

5-метилцитозин превращается в тимин. В цикле последующей

репликации, возникший в результате дезаминирования мисмэтч

(T-G) может либо коррегироваться в нормальный вариант (С-G),

либо приводить к мутациям типа трансцизий (Т-G) или (С-А).

Естественно, что гены, имеющие в своей структуре большой

процент CpG оснований, особенно часто подвергаются спонтан-

ному мутированию типа трансцизий. В частности, преобладание

подобных точечных мутаций известно для генов факторов IX и

VIII свертывания крови, для гена фенилкетонурии и других.

Так, из 76 мутаций гена фактора IX в 21 случае найдены

трансцизии CpG - TpG или СрА (Green et al.,1990). Преоблада-

ние таких мутаций отмечено и в 22 CpG дуплетах гена фенила-

ланингидроксилазы у больных фенилкетонурией (Abadie et

al.,1989).

Другим важным фактором эндогенного мутагенеза является

наличие тесно сцепленных с генами гомологичных последова-

тельностей ДНК (псевдогенов). В мейозе такая ситуация неред-

ко приводит к неравной гомологичной рекомбинации и, как

следствие этого, к генной конверсии, сопровождающейся струк-

турными перестройками типа делеций, дупликаций и т.п. Подоб-

ный механизм мутаций, как оказалось, является доминирующим

для гена 21-гидроксилазы (Morel, Miller,1991), а также для

гена фактора VIII свертывания крови (Lakich et al.,1993).

Важная роль ошибок рекобинации в этиологии структурных поло-

мок гена особенно очевидна при анализе гена дистрофина, му-

тации которого ведут к миопатии Дюшенна. Известно, что в 60%

случаев мутации этого гена представляют собой делеции, зах-

ватывающие один или несколько соседних экзонов. Известно

также, что подавляющее большинство делеций сосредоточено в

двух "горячих" районах этого гигантского по размерам гена

(2,2 Мб), и при этом частота внутригенных рекомбинаций почти

в 4 раза больше, чем можно предполагать, исходя из его раз-

меров (Oudet et al.,1992). Любопытно отметить, что в одной

из этих горячих точек (интрон 7) недавно обнаружен кластер

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14


© 2010
Частичное или полное использование материалов
запрещено.