РУБРИКИ

: Литература - Другое (книга по генетике)

 РЕКОМЕНДУЕМ

Главная

Правоохранительные органы

Предпринимательство

Психология

Радиоэлектроника

Режущий инструмент

Коммуникации и связь

Косметология

Криминалистика

Криминология

Криптология

Информатика

Искусство и культура

Масс-медиа и реклама

Математика

Медицина

Религия и мифология

ПОДПИСКА НА ОБНОВЛЕНИЕ

Рассылка рефератов

ПОИСК

: Литература - Другое (книга по генетике)

щихся по длине радиоактивномеченых фрагментов ДНК с одним и

тем же специфическим для данной пробирки дидезокситерминато-

ром на конце молекулы. После одновременного электрофорети-

ческого разделения этих фрагментов на четырех соседних до-

рожках и радиоавтографии, размер синтезированных фрагментов

может быть определен, а значит и определена локализация ди-

дезоксинуклеотидов и порядок соответствующих им нуклеотидов

в исходной молекуле ДНК (Рис.1.9). На каждом секвенирующем

геле может быть определена первичная последовательность все-

го около 500 пар оснований. В своем первоначальном варианте

этот метод является достаточно трудоемким и дорогостоящим.

Достаточно заметить, что цена одного звена (шага) в цепи ДНК

в Международной Программе "Геном человека" еще несколько лет

назад оценивалась в 1$.

В качестве модификаций метода Сэнджера используют пред-

варительное клонирование ДНК в векторах, сконструированных

на основе фага M13, для получения протяженных однонитевых

участков ДНК, которые могут быть непосредственно секвениро-

ваны без денатурации и праймирования. Очень эффективной ока-

залась система векторов mp8 и mp9, позволяющих вести сиквенс

одовременно в обоих направлениях и прочитывать участки боль-

шей протяженности. Интенсивно разрабатывается методология

автоматического ДНК секвенирования. Особенно перспективным

для массового секвенирования в автоматическом режиме оказа-

лось применение меченых различными флюорохромами дидеокси-

нуклеотидов. В этом варианте каждому из нуклеотидов соот-

ветствует свой цвет полосы в геле, который легко учитывается

автоматически. Этот метод нашел особенно широкое применение

в реализации программы Геном человека. По последним данным,

разработка автоматических секвенаторов позволила снизить

стоимость одного звена до 0,5$ и резко повысить эффектив-

ность этого процесса. Так, на 30 автоматических секвенаторах

фирмы Applied Biosystems за одну неделю работы в 1994г.мож-

но было просеквенировать до 1 млн пар оснований.

В последние годы активно разрабатываются принципиально

новые, более эффективные и экономичные методы секвенирова-

ния. Особенно перспективным на сегоднешний день представля-

ется метод секвенирования путем гибридизации исследуемой

последовательности ДНК с набором олигонуклеотидов, так назы-

ваемой олигонуклеотидной матрицей (Мирзабеков, 1990; Барский

и др.,1994; Southern, et al, 1992). Наиболее удобными для

этой цели являются наборы матриц - чипы, в ячейках которых

пришиты (иммобилизованы) октануклеотиды. Суть данного подхо-

да в том, что пришивается набор всех возможных вариантов пе-

рестановок из 4-х стандартных нуклеотидов (А,Г,Ц,Т) опре-

деленной длины, при этом в случае октануклеотидов количество

возможных вариантов нуклеотидов составляет 65536. Секвениру-

емый фрагмент ДНК метят радиоактивным фосфором и гибридизуют

с октануклеотидной матрицей. Фрагмент ДНК гибридизуется

только с теми октануклеотидами, последовательности которых

комплементарны его участкам. Таким образом, определяется на-

бор всех возможных октануклеотидов, присутствующих в иссле-

дуемом фрагменте ДНК. После этого, при помощи специальной

компьютерной обработки упорядочивается расположение этих ок-

тамеров в изучаемом фрагменте ДНК. Этот перспективный метод

позволяет значительно ускорить время секвенирования за счет

автоматизации процесса.

1.7 Полимеразная цепная реакция.

До недавнего времени гибридизация с ДНК-зондами и клони-

рование являлись единственными способами поиска и выделения

специфических геномных или к-ДНК-овых последовательностей

ДНК с целью их дальнейшего исследования. Не говоря уже о

большой трудоемкости этих методов, они имеют ряд принципи-

альных недостатков и ограничений. Во-первых, исследуемые

фрагменты значительно превосходят по длине ДНК-зонды и слиш-

ком велики для прямого молекулярного анализа. Концы этих

последовательностей не могут быть выбраны произвольно, так

как определяются наличием соответствующих рестрикционных

сайтов в исследуеммой молекуле ДНК. Во-вторых, для проведе-

ния успешной рестрикции и гибридизации необходимо большое

количество хорошо очищенной высокомолекулярной геномной ДНК

(не менее 10 микроГ на одну реакцию). Такое количество ДНК

обычно получают из 3- 5 мл крови. Часто это количество ока-

зывается слишком большим, если учесть, что речь идет о детях

и о тяжело больных людях. Кроме того, необходимость немед-

ленного использования собранной крови для выделения ДНК или

хранения ее до использования при -20 С затрудняет исследова-

ние нетранспортабильных пациентов или родственников, прожи-

вающих на отдаленном расстоянии от исследовательских цент-

ров. В-третьих, для геномной гибридизации, как правило, не-

обходимы радиоактивные ДНК-зонды с высокой удельной актив-

ностью, не менее 10!8-10!9 имп./мин/мкГ., причем они должны

быть использованы в течение очень короткого периода после их

приготовления. Кроме того, работа с радиоактивным материалом

требует соблюдения необходимой техники безопасности и нали-

чия специально оборудованного изотопного блока, что возможно

лишь для некоторых диагностических центров. В-четвертых, не-

обходимость длительной экспозиции автографов значительно уд-

линяет время получения результатов, что также ограничивает

использование методов блот-гибридизации для пренатальной ди-

агностики плода, специфика которой во многом определяется

сроком беременности.

Предложенный в 1983г. американским исследователем

Карри Муллисом, удостоенным за это изобретение Нобелевской

премии в 1993г., альтернативный метод анализа геномной ДНК -

метод полимеразной цепной реакции (ПЦР), явился эпохальным

открытием молекулярной биологии нашего века. Метод ПЦР или

специфической амплификации ДНК позволяет избирательно синте-

зировать in vitro относительно небольшие участки ДНК, длиной

от нескольких десятков до нескольких сотен пар нуклеотидов,

реже до 1000 - 2000 п.о., используя в качестве матрицы любые

образцы ДНК, содержащие амплифицируемую последовательность.

Необходимым условием для проведения ПЦР является знание нук-

леотидной последовательности амплифицируемой области ДНК,

так как специфический выбор этого участка осуществляют путем

гибридизации матричной ДНК с двумя искусственно синтезиро-

ванными праймерами - олигонуклеотдными последовательностями

ДНК, длиной, обычно, от 15 до 30 п.о., комплементарными 3'-

концам амплифицируемого участка на смысловой и антисмысловой

нитях ДНК, соответственно. Таким образом, расстояние между

праймерами определяяет длину синтезируемых молекул. В ка-

честве матрицы для синтеза может быть использован любой тип

ДНК - геномная ДНК отдельных индивидуумов различных видов

про- и эукариот; ДНК, выделенная из культур клеток, бактери-

альных клонов, библиотек генов или из других источников. Для

проведения специфической амплификации не требуется больших

количеств матричной ДНК и, в принципе, достаточно даже одной

молекулы ( Li et al., 1988). Успех в разработке метода ПЦР в

значительной мере связан с использованием в качестве фермен-

та, обеспечивающего синтез ДНК, термофильной ДНК полимеразы,

выделенной из бактерий, живущих в горячих источниках, и по-

тому устойчивой к действию высоких температур (Kogan et al.,

1987).

Принципиальная схема полимеразной цепной реакции пока-

зана на Рис.1.10. На первом этапе исследуемая двухнитевая

матричная ДНК переводится в однонитевую форму путем ее наг-

ревания в течение нескольких минут до температуры, превышаю-

щей +95 - +98 С. Дальнейшая схема проведения ПЦР достаточно

проста и заключается в чередовании циклов (1) гибридизации

или отжига ДНК с праймерами, (2) синтеза последовательности,

комплементарной матричной ДНК, и (3) денатурации образовав-

шихся двухнитевых структур. При гибридизации, достигаемой за

счет понижения температуры реакционной смеси до +30 - + 50

С, происходит образование двухнитевого участка ДНК в строго

специфичных областях, комплементарных праймерам. При темпе-

ратуре, оптимальной для работы ДНК-полимеразы - +60 - +70 С,

начинается синтез ДНК в направлении 5' - 3' с двухнитевого

участка, образованного праймерами. Затем при нагревании

раствора примерно до +80 - +90 С синтез прекращается и двух-

нитевой участок между матричными и вновь синтезированными

молекулами ДНК расплавляется (денатурирует). В первом цикле

олигопраймеры гибридизуются с исходной матричной ДНК, а за-

тем в последующих циклах и с вновь синтезированными молеку-

лами ДНК по мере их накопления в растворе. В последнем слу-

чае синтез ДНК заканчивается не при изменении температурного

режима, а по достижении ДНК-полимеразой границы амплифициро-

ванного участка, что и определяет, в кончном счете, размер

вновь синтезированного участка ДНК с точностью до одного

нуклеотида.

Таким образом, при каждом цикле происходит двухкрат-

ное увеличение числа синтезированных копий выбранного для

амплификации участка ДНК и содержание продуктов амплификации

в растворе нарастает в геометрической прогрессии. Каждая из

процедур цикла определяется двумя параметрами - температурой

реакции и ее длительностью, меняющейся в диапозоне от десят-

ков секунд до 1 - 3 минут, так что полный цикл длится

от одной до несколько минут. За 25 - 30 циклов число синте-

зированных копий ДНК достигает нескольких миллионов. ПЦР

обычно проводят в автоматическом режиме, используя для этого

специальные приборы - термоциклеры или амплификаторы ДНК.

Такой прибор позволяет задавать нужное количество циклов и

выбирать оптимальные временные и температурные параметры для

каждой процедуры цикла из большой и часто непрерывной шкалы

возможных вариантов. В техническом исполнении ПЦР очень

проста. Все компоненты реакции - матричную ДНК, олигопрайме-

ры, смесь трифосфатов и термофильную ДНК полимеразу добавля-

ют в специфический буфер (часто одномоментно), наслаивают

небольшой обьем вазелинового масла для предотвращения раст-

вора от высыхания, затем помещают пробирку с реакционной

смесью в автоматический термоциклер и выбирают необходимую

программу циклической смены температуры и длительности каж-

дого шага реакции. Общий обьем реакционной смеси, обычно,

составляет от 10 до 50 - 100 микролитров. Выбор оптимального

режима работы определяется длиной и специфичностью амплифи-

цируемого участка. Следует подчеркнуть, что, реально, для

каждой полимеразной реакции в звисимости от типа праймеров,

длины амплифицированного фрагмента, особенностей его первич-

ной нуклеотидной структуры, а также от типа используемой

термофильной ДНК-полимеразы оптимальные режимы температуры и

состав амплификационной смеси могут существенно варьировать

и зачастую подбираются эмпирически.

С помощью ПЦР можно непосредственно исследовать места

локализации предполагаемых мутаций или полиморфных сайтов, а

также изучать наличие любых других специфических особен-

ностей ДНК. Подбор системы олигопраймеров производят на

основании анализа нуклеотидной последовательности амплифици-

руемого участка. Разработаны различные варианты автомати-

ческого поиска последовательностей ДНК, использование кото-

рых в качестве праймеров оптимизирует процедуру амплификации

специфического участка геномной ДНК. Для того, чтобы гибри-

дизация проходила строго специфично, праймеры не должны со-

держать повторяющихся последовательностей ДНК. Мы уже отме-

чали, что для проведения ПЦР достаточно минимального коли-

чества ДНК, вплоть до одной молекулы. Кроме того, различные

органические компоненты клеток, такие как белки, липиды, уг-

леводы, фрагменты клеточных органелл или мембран заметно не

препятствуют процессу амплификации. Поэтому в качестве

источника матричной ДНК может быть использован любой, даже

деструктурированный биологический материал, сохранивший в

своем составе достаточно полный набор фрагментов исходных

молекул ДНК. Для специфической амплификации наряду с очищен-

ной ДНК используют высушенные на фильтровальной бумаге пятна

крови, небольшие кусочки тканей, например, такие как ворсины

хориона, смывы из полости рта, луковицы корней волос, куль-

туры клеток и сливы среды с клеточных культур, содержащие не

прикрепившиеся и не давшие роста клетки, соскребы с цитоге-

нетических препаратов и, что особенно удивительно, получен-

ные при паталогоанатомическом анализе и длительно хранивши-

еся фиксированные ткани (Higuchi, R. et al., 1988). Более

подробные сведения о постановке ПЦР можно получить в ряде

специальных руководств и инструкций.

Существуют различные модификации ПЦР, которые исполь-

зуются в зависимости от конкретных целей проведения реакции

или от характера последующего молекулярного анализа амплифи-

катов. Так, для трудноамплифицируемых участков ДНК (содержа-

щих различные повторяющиеся последовательности или необычные

структурные элементы), а также в тех случаях, когда матрич-

ная ДНК присутствует в следовых количествах, ПЦР проводят в

два раунда, используя в качестве матричной ДНК на втором

этапе амплификации, или как еще говарят при доамплификации,

продукты ПЦР, синтезированные в первом раунде. Часто в этих

случаях для повышения специфичности праймирования используют

систему, так называемых вмонтированных (nested) праймеров,

то есть при доамплификации в качестве праймеров выбирают

последовательности, локализованные внутри амплифицируемого в

первом раунде участка ДНК.

В ряде случаев удобно проводить мультиплексную ПЦР,

то есть одновременную амплификацию нескольких участков мат-

ричной ДНК. Можно получать меченые продукты ПЦР, добавляя в

реакционную смесь меченые трифосфаты. Особого внимания зас-

луживает возможность проведения ПЦР с молекулами кДНК.

На основе этой реакции разработаны методы анализа экспрессии

генов и получения больших количеств кДНК. Уместно заметить,

что реакцию амплификации можно проводить не только в раство-

рах, но и непосредственно на хромосомных препаратах, при

этом в случае использования меченых нуклеотидов продукты

амплификации будут гибридизоваться и выявлять комплементар-

ные им участки ДНК на хромосомах (метод PRINS - polymerase

reaction in situ). До настоящего времени доступными амплифи-

кации были участки ДНК, не превышающие по длине 5 kb. В

последнее время, благодаря внесению ряда кардинальных усо-

вершенствований (особый подбор праймеров, использование сра-

зу двух различных ДНК полимераз, трицинового буфера, специ-

ального температурного режима полимеразных циклов), возможно

проведение амплификации фрагментов ДНК, достигающих 35 kb. В

частности, таким образом удалось амплифицировать плазмиду со

вставкой 8.5 kb, равной целому геному вируса HIV 1 (Cheng et

al., 1994). И это еще не предел. В дальнейшем мы неоднократ-

но будем возвращаться к описанию различных модификаций ПЦР,

так как этот метод по праву стал один из основных в молеку-

лярной диагностике наследственных болезней ( Erlich, 1993;

Rolfs et al., 1993; RT-PCR, Methods and Applications, 1991).

Возможность очень точного и специфичного выбора участ-

ка ДНК для амплификации, небольшие размеры синтезируемых мо-

лекул, их огромное количество черезвычайно облегчают молеку-

лярный анализ продуктов ПЦР. Как правило, амплифицированную

ДНК можно непосредственно наблюдать в проходящем ултрофиоле-

те в виде красной полосы после электрофоретического концент-

рирования и обычного окрашивания геля этидиумом бромидом.

Кроме того, возможна идентификация этих молекул путем блот

гибридизации со специфическими олигонуклеотидными зондами.

При наличии сайтов рестрикции в амплифицированных участках

ДНК после их обработки эндонуклеазами и электрофореза коли-

чество и положение окрашенных полос на геле изменяется в

соответствии с положением этих сайтов (Рис. 1.11 ). Путем

электрофореза могут быть выявлены небольшие отклонения в

размерах синтезированных молекул, которые возникают за счет

делеций или инсерций нескольких нуклеотидов в исходной мат-

ричной молекуле ДНК; конформационные изменения в однонитевых

молекулах ДНК, возникающие при замене оснований; а также

структурные изменения в дуплексах между нормальными и му-

тантными вариантами амплифицированных фрагментов ДНК. И, на-

конец, возможно определение полной нуклеотидной последова-

тельности синтезированных молекул с идентификацией всех му-

таций в исследуемом районе матричной ДНК (см. Главу IV).

Разработаны варианты ПЦР, при которых синтезируются преиму-

щественно однонитевые фрагменты ДНК, что в последуюшем зна-

чительно облегчает их секвенирование. В дальнейшем мы более

подробно рассмотрим методы генотипирования мутаций с помощью

ПЦР, позволяющие производить полный молекулярный анализ

определенных участков ДНК у отдельных индивидуумов. При этом

отпадает необходимость визуализации малых количеств ДНК пу-

тем их гибридизации с мечеными геномными или кДНК-зондами.

Это не означает, конечно, что методы блот гибридизации и

клонирования потеряли свою актуальность. Без их использова-

ния невозможна молекулярная идентификация генов, предшеству-

ющая разработке методов молекулярной диагностики с использо-

ванием ПЦР.

ГЛАВА VI.

ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ЭКСПРЕССИИ ГЕНОВ.

Раздел 6.1 Дифференциальная активность генов, выбор

адекватных биологических моделей.

Молекулярная идентификация гена, нарушение работы кото-

рого приводит к развитию наследственного заболевания, созда-

ет предпосылки для дальнейшего более подробного анализа ге-

нетических и биохимических основ патогенеза и разработки на

этой базе наиболее эффективных методов лечения. Начальные

этапы решения поставленной задачи включают в себя иссследо-

вание механизмов тканеспецифической экспрессии и регуляции

активности генов в нормальных клетках, оценку клинического

выражения различных типов нарушений гена, выявление первич-

ного биохимического дефекта, а также сопоставление молеку-

лярных основ работы генов в нормальных и мутантных клетках.

Естественно, что в различных тканях организма

экспрессируется не все, а лишь определенные группы генов.

Исключение составляют лишь так называемые гены домашнего хо-

зяйства (house-keeping genes), генопродукты которых обеспе-

чивают жизнедеятельность всех типов клеток (см.Главу II). По

весьма ориентировочным оценкам в тканях млекопитающих и че-

ловека работают в среднем около 2-3% всех генов, в клетках

печени - основной биохимической лаборатории организма - око-

ло 5%, тогда как в клетках мозга - примерно 9-10% (Корочкин,

1977). Это означает, что в различных соматических клетках

эукариот транскрибируется от 5 до 20 тысяч генов (Льюин,

1987). Значительная часть контролируемых ими белков необхо-

дима для обеспечения жизнедеятельности самих клеток. В про-

цессе онтогенеза и клеточной дифференцировки в разных тканях

организма происходит избирательная активация многих других

специфических генов, что, в конечном итоге, обусловливает

значительные межклеточные различия в наборе белков и в ско-

рости их синтеза.

Контроль генной активности осуществляется за счет диф-

ференциальной транскрипции и процессинга РНК в клеточных яд-

рах, различной стабильности мРНК в цитоплазме, избирательной

трансляции мРНК. Дифференциальная экспрессия генов, конечным

результатом которой является синтез функционально активного

белка, предполагает не только адекватную регуляцию генной

активности, но и полноценность всех последующих этапов,

включая сам белковый продукт, его устойчивость, способность

к посттрансляционным модификациям, правильную локализации и

корректное взаимодействие с другими компонентами клетки. Ре-

шающее значение для успешного анализа всего этого сложного

комплекса имеет выбор адекватных биологических моделей, по-

иск и целенаправленное конструирование которых представляет

вполне самостоятельную научную задачу.

Наиболее доступными модельными системами для анализа

экспрессии генов in vitro являются культуры клеток. Для кло-

нирования, генноинженерного манипулирования, направленного

введения сайт специфических мутаций, получения большого ко-

личества клонированных последовательностей ДНК, специфи-

ческих молекул мРНК, а также белкового продукта гена обычно

используют генетически хорошо изученные прокариотические

системы (Хеймс, Хиггинс, 1987). Для исследования процессов

трансляции, посттрансляционных модификаций белка, его внут-

риклеточной локализации и функционирования чаще используют

культуры клеток эукариот и, в частности, специфические куль-

туры клеток человека. Особая роль в изучении начальных эта-

пов развития патологического процесса, обусловленного

присутствием генных мутаций, а также в разработке терапевти-

ческих методов, включая генноинженерную коррекцию метаболи-

ческого дефекта, принадлежит культурам мутантных клеток. Это

могут быть первичные или перевиваемые культуры клеток, полу-

ченные из специфических тканей больного человека, либо выде-

ленные из тканей линейных животных, служащих генетической

моделью наследственного заболевания.

Идентификация гомологичных генов у экспериментальных

животных во многих случаях значительно облегчает и ускоряют

исследование функциональной активности нормальных и мутант-

ных генов человека. Большая роль в изучении молекулярных ме-

ханизмов развития патологических процессов in vivo принадле-

жит генетическим линиям животных. Это могут быть линии, по-

лученные в результате отбора спонтанно возникших или индуци-

рованных мутаций, а также искусственно сконструированные мо-

дели на базе трансгенных животных, в геном которых введен

чужеродный ген или фрагмент ДНК. Рассмотрим основные экспе-

риментальные подходы, используемые для анализа экспрессии

генов.

Раздел 6.2 Анализ регуляторных элементов гена, изоляция

и исследование мРНК, искусственные

транскрипционные системы.

Регуляция экспрессии генов в цепочке ДНК - РНК - белок

может осуществляться на различных молекулярных уровнях. В

соответствии с этим исследования дифференциальной активности

генов в разных типах клеток и тканей включают оценку работы

контролирующих элементов генов, анализ молекул РНК на всех

этапах от появления первичного транскрипта до зрелой мРНК и

изучение соответствующего белкового продукта, включая его

процессинг (созревание), внутриклеточную локализацию, тка-

неспецифическое распределение .

Исследования регуляторных цис-действующих элементов ге-

нома, таких как промоторы, инхансеры, участки ДНК, подавляю-

щие транскрипцию, являются составной частью анализа молеку-

лярной структуры любого гена. Идентификацию таких элементов

проводят с использованием разнообразных современных методов

молекулярной генетики. В частности, последовательности ДНК в

5'- фланкирующей области гена, ответственные за тканеспеци-

фическую индукцию генной активности, могут быть локализованы

путем исследования транскрипции в различных линиях клеток

при введении в них генов с искусственными делециями этих

участков ДНК. Для оценки активности идентифицированных регу-

ляторных последовательностей их сливают с чужеродными хорошо

изученными неиндуцибельными клонированными генами, так назы-

ваемыми "репортерами". Такие генетические конструкции в

составе векторных последовательностей вводят в культивируе-

мые клетки эукариот и наблюдают за изменением уровня

экспрессии. В качестве "репортера" часто использую ген хло-

рамфеникол-ацетил-трансферазы (CAT-ген), который в естест-

венных условиях экспрессируется только в клетках прокариот.

Сам фермент (CAT) обладает высокой активностью, что позволя-

ет не только легко обнаруживать ее минимальные количества в

клетке, но и с высокой точностью проводить количественную

оценку. Для повышения чувствительности анализ экспрессии хи-

мерных генов часто проводят в культуре фибробластов почек

африканской зеленой мартышки (COS-клетки). Эти клетки моди-

фицированы таким образом, что в них после трансфекции про-

исходит амплификация копий сконструированных определенным

образом эписом (внехромосомных генетических конструк-

ций ( см. Главу X), что ведет к значительному усилению сиг-

налов экспрессии введенных генов (трансгенов). Перенос генов

(трансгеноз) может быть осуществлен и на уровне целого орга-

низма, в частности, зиготы. Полученные в результате подобных

манипуляций трансгенные животные могут быть также использо-

ваны в качестве модельной системы для анализа механизмов

тканеспецифической активации генов in vivo.

Матричная РНК является наиболее удобным обьектом для

изучения регуляции транскрипции генов и посттранскрипционных

модификаций РНК. Тотальная клеточная РНК сотоит на 90 - 95%

из рибосомальных и транспортных РНК, тогда как доля трансли-

руемых или poly(A)+ РНК не превышает 5% (Льюин, 1987). При

этом, концентрация РНК-транскриптов индивидуальных генов

среди всех молекул мРНК, в среднем, колеблется в пределах от

0.01% до 0.001% (Гайцхоки, 1978). Поэтому для обнаружения

индивидуальных типов мРНК должны использоваться высоко-

чувствительные методы. Обычным методом идентификации мРНК на

тканевом и клеточном уровнях является гибридизация in situ

РНК- или ДНК-зондов с молекулами мРНК на гистологических

срезах (Хаффнер, Уиллисон,1990). В качестве ДНК-зондов

используют клонированные последовательности кДНК и синтети-

ческие олигонуклеотиды. После инкубации меченых зондов на

цитологических препаратах с последующей тщательной отмывкой

несвязавшихся молекул положение комплементарных РНК-последо-

вательностей в клетках определяют радиоавтографическими, ли-

бо в случае биотинового мечения - иммуногистохимическими ме-

тодами. Оптимальные условия гибридизации дают возможность не

только выявлять присутствие специфических мРНК, но и опреде-

лить их внутриклеточную локализацию (Манк, 1990; Хаффнер,

Уиллисон, 1990; Boehringer, Mannual, 1994).

Анализ индивидуальных РНК включает изоляцию из тканей

пула неповрежденных биологически активных мРНК и идентифика-

цию среди них специфических молекул путем использования раз-

личных вариантов ДНК-РНК гибридизации. Для генов с высоким

уровнем транскрипции могут быть пригодны дот или слот блоты

(см.Главу I). Когда источником РНК служат клетки, которые не

могут быть получены в большом количестве, используют цитоп-

лазматический дот-блот. При этом целые клетки лизируют, и

фиксируют непосредственно на тех мембранах, на которых про-

водят гибридизацию. Значительно большой чувствительностью

обладает, так называемый Northern blot (нозерн-блот) - гиб-

ридизация с ДНК- зондами на фильтрах предварительно скон-

центрированных и фракционированных путем электрофореза моле-

кул РНК (Sambrook et al., 1987). Электрофорез проводят в

агарозе с добавлением формальдегида, денатурирующего РНК. В

этих условиях скорость продвижения молекул РНК через гель

находится в логарифмической зависимости от длины последова-

тельности, что позволяет точно определить размер РНК

транскрипта. Основная масса РНК на геле представлена в виде

двух доминирующих бэндов, соответствующих двум типам рибосо-

мальной РНК - 28S и 18S. Все молекулы мРНК сконцентрированы

в плохо различимой, слабо окрашенной области геля, в которой

отдельные типы мРНК могут быть выявлены только путем гибри-

дизации с соответствующими ДНК-зондами. Нозерн-блот имеет то

преимущество, что при электрофорезе могут быть разделены мо-

лекулы РНК, дающие перекрестную гибридизацию с ДНК-зондом.

Кроме того, характер электрофоретического разделения позво-

ляет визуально оценить качество изолированной РНК. При очень

низких концентрациях специфических мРНК или в тех случаях,

когда ДНК-зонды дают перекрестную гибридизацию с другими

компонентами (не мРНК), проводят обогащение изолированной

тотальной РНК транслируемыми мРНК путем отбора на колонках

фракций, содержащих поли-A "хвосты". Для этого выделенную

РНК пропускают через короткую колонку с пришитыми поли-T

олигонуклеотидными последовательностями и высокой концентра-

цией солей в буферном растворе, так чтобы молекулы мРНК, со-

держащие поли -A "хвосты", задерживались на колонке. При

снижении концентрации солей в буфере происходит расплавление

A-T дуплексов и высвобождение молекул мРНК. Таким способом

доля этих молекул в определенных солевых фракциях может быть

увеличена на два порядка. Конечно, поли-A селекция применима

в тех случаях, когда имеется достаточно большое количество

тотальной РНК. Другим методом для исследования структуры РНК

транскриптов является S1-анализ. В этом случае ДНК-РНК гиб-

ридизацию ведут в растворе, куда и добавляют S1 нуклеазу для

переваривания однонитевых несвязавшихся молекул как ДНК, так

и РНК, после чего проводят электрофоретическую очистку дуп-

лексов, которые затем элюируют из геля для последующего ана-

лиза (Sambrook et al.,1989). Этот метод очень удобен для

анализа стартовых сайтов и 3'-концов генов, для определения

направления транскрипции и картирования интронов.

Уровень мРНК в клетке определяется несколькими кинети-

ческими параметрами - скоростью первичного синтеза, эффек-

тивностью процессинга РНК-транскриптов и периодом полураспа-

да зрелых молекул мРНК. Последний параметр определяют по ди-

намике исчезновения мРНК после добавления к клеткам актино-

мицина D, специфическим образом супрессирующего транскрип-

цию.

Исследование механизмов транскрипции и процессинга пер-

вичных РНК-транскриптов проводят in vitro с использованием

искусственным образом сконструированных транскрипционных

систем (Manley et al., 1986; Dignam et al., 1983;

Gutierrez-Hartmann et al., 1987; Хэймс,Хиггинс, 1987). Для

этого могут быть выбраны два различных подхода. В первом

случае изолируют ядра и в качестве транскрипционной матрицы

используют неповрежденный хроматин. Синтез РНК проводят с

добавлением всех необходимых реагентов и, в частности, три-

фосфатов, в один из которых (обычно в урацил) вводят ради-

оактивную метку. При этом вновь синтезированные молекулы РНК

оказываются мечеными. Выбор специфических молекул РНК прово-

дят путем ДНК-РНК гибридизации, однако, в отличие от ранее

описанных методов анализа мРНК, используют немеченые

кДНК-зонды, предварительно нанесенные на фильтры. Большим

достоинством этой транскрипционной системы является ее

максимальная приближенность к естественным процессам. При

втором подходе транскрипция ведется с клонированных фрагмен-

тов ДНК, а ядерные экстракты служат источником ферментов и

регуляторных белков.

Раздел 6.3 Анализ трансляции, ДНК-экспрессионные систе-

мы.

Традиционные методы анализа регуляции трансляции и

посттрансляционных модификаций белков основаны на использо-

вании модельных систем, представляющих собой цитоплазмати-

ческие свободные от мРНК безядерные экстракты клеток, содер-

жащие рибосомальный аппарат, транспортные РНК, набор амино-

кислот и ферментов, необходимых для трансляции и процессинга

белков (Хэймс, Хиггинс, 1987; Клеменс, 1987 ). После добав-

ления к такой системе специфической мРНК происходит синтез

соответствующей полипептидной цепи in vitro. При введении

меченых аминокислот в систему вновь синтезированные белки

после электрофоретической очистки могут быть идентифицирова-

ны путем радиоавтографии либо иммунологическими методами,

при наличии соответствующих антител (Клеменс, 1987). Однако,

для значительного числа моногенных наследственных заболева-

ний первичный биохимический дефект неизвестен, а следова-

тельно, не идентифицированы и мРНК транскрипты. Биохими-

ческое изучение многих белков затруднено из-за их минорного

содержания и отсутствия эффективных методов выделения и

очистки. Последнее обстоятельство в значительной мере от-

носится к нерасворимым белкам, ассоциированным с мембранными

структурами клеток.

ДНК-экспрессионные системы, то есть клеточные культу-

ры, синтезирующие чужеродные белки, являются очень мощным

средством анализа структуры, функции и синтеза белков

(Sambrook et al., 1989). Такие системы конструируют на осно-

ве экспрессионных векторов, содержащих в своем составе силь-

ные промоторы и регуляторные последовательности, обеспечива-

ющие высокий, но в то же время регулируемый уровень

экспрессии. Кодирующие последовательности чужеродных генов

инсертируют (вставляют) с помощью соответствующих генно-ин-

женерных приемов в область действия этих промоторов. Конеч-

но, такие системы должны содержать и трансляционные сигналы,

в частности, сайты связывания рибосом, обеспечивающие работу

рибосомального аппарата клеток хозяина. В некоторых случаях

экспрессионные векторы вводят в мутантные по протеазным ге-

нам клеточные культуры, с тем чтобы предотвратить деградацию

чужеродных белков в клетках.

Существует три типа экспрессионных систем - бактериаль-

ные, сконструированные обычно на основе E.coli, дрожжевые и

экспрессионные культуры клеток млекопитающих. Каждая из этих

систем имеет свои преимущества и недостатки. Бактериальные

системы наиболее удобны для клонирования, обладают высоким

уровнем экспрессии (до 1-2 грамм белка на литр культуры) и

их используют, обычно, для производства большого количества

чистого белка, необходимого для получения антител или для

фармацевтических целей. Удобны также эти системы для введе-

ния изменений в различные районы полипептидной цепи путем

сайт-направленного мутагенеза в нуклеотидной последователь-

ности чужеродной ДНК. Получение и исследование таких "му-

тантных" белков очень важно для оценки функциональной значи-

мости различных участков белка.

Уровень экспрессии чужеродных белков в дрожжевых клет-

ках вдвое, а в клетках млекопитающих в десятки раз ниже, чем

в бактериальных. Однако, в бактериальных клетках отсутствуют

ферментативные системы, обеспечивающие процессинг эукариоти-

ческих белков. Поэтому эукариотические системы удобнее

использовать для изучения посттрансляционных модификаций

белка - гликозилирования, то есть присоединения к полипеп-

тидной цепи углеводных остатков; скручивания белка с образо-

ванием третичной структуры, часто, за счет возникновения

дисульфидных связей; и N-концевых модификаций, стабилизирую-

щих структуру белка. В ДНК-экспрессионных системах может

быть синтезировано достаточно много белка, чтобы получить

его в кристаллической форме и исследовать пространственную

структуру и функциональное назначение отдельных доменов

(Хэймс, Хиггинс, 1987).

Использование экспрессионных библиотек для изоляции ко-

дирующих последовательностей гена рассматривалось ранее (см.

Глава II). После секвенирования кДНК можно, исходя из гене-

тического кода, прогрозировать аминокислотный состав белка и

произвести компьюторный поиск в банке данных гомологичных

последовательностей в составе белков с уже известной струк-

турой и функциями. Выявление родственных белков, близких по

своему полипептидному составу, значительно ускоряет и облег

чает дальнейший молекулярный анализ функционирования иссле-

дуемого белка в клетке. Аминокислотная последовательность

белка позволяет прогнозировать его третичную структуру,

идентифицировать домены, оценивать функциональную значимость

целого белка и отдельных его компонентов. Не менее важным

практическим следствием этих данных является также возмож-

ность получения антител к строго специфичным участкам бел-

ка. Для этого могут быть использованы два подхода - биохими-

ческий и молекулярно-генетический. В первом случае для имму-

низации используют искусственно синтезированные полипептиды,

которые пришивают к белковой молекуле-носителю (гаптену).

Размеры таких полипептидов, обычно, не превышают 30 амино-

кислот - они не могут быть очень большими из-за высокой сто-

имости и трудоемкости синтеза длинных молекул. При втором

подходе экзонные участки гена инсертируют в экспрессионный

вектор в область, кодирующиую селектируемый белок. В резуль-

тате экспрессии такой конструкции получают слитый белок, в

котором наряду с аминокислотной последовательностью селекти-

руемого маркера содержится определенный фрагмент исследуемо-

го белка. Эту химерную молекулу и используют для иммунизации

животных и получения моновалентных или моноклональных анти-

тел. При наличии антител могут быть применены различные им-

мунологические подхооды для анализа тканеспецифического и

внутриклеточного распределения белка, исследования его моди-

фикаций, а также для получения нативного белка в препаратив-

ных количествах.

Cледующим шагом на пути анализа молекулярных механизмов

регуляции экспрессии гена является идентификация тех наруше-

ний в структуре, локализации и активности молекул мРНК и

белка, которые возникают вследствие генетических мутаций. Мы

уже упоминали об огромном значении культур мутантных клеток

для подобных исследований. Однако, многие патологические

процессы, протекающие в организме больного, не могут быть

исследованы in vitro. С другой стороны, возможности получе-

ния необходимого количества клеток и тканей пациента и испы-

тания in vivo различных схем лечения значительно ограничены.

Поэтому для многих наследственных болезней эффективность

изучения основ патогенеза существенным образом зависит от

наличия адекватных биологических моделей. Способы конструи-

рования таких моделей подробно изложены в Главе YIII.

ГЛАВА II.

ГЕНОМ ЧЕЛОВЕКА, СТРУКТУРА ГЕНОВ.

Раздел 2.1. Определение генома и его основных элемен-

тов.

Термин геном используется для обозначения полной гене-

тической системы клетки, определяющей характер онтогенети-

ческого развития организма и наследственную передачу в ряду

поколений всех его структурных и функциональных признаков.

Понятие генома может быть применено к таксономической груп-

пе, виду, отдельной особи, клетке, микроорганизму или ви-

русу. Так, можно говорить о структуре генома эукариот и про-

кариот, сравнивать геномы разных видов, изучать особенности

строения генома у конкретных индивидуумов или следить за из-

менениями, происходящими в геноме специфических клеток в

процессе их онтогенетической дифференцировки. Часто геном

определяется как генетическая информация, заключенная в мо-

лекулах ДНК одной клетки. Однако, такие факты, как

отсутствие связи между количеством ДНК в расчете на гаплоид-

ный геном и таксономическим статусом видов, а также много-

численные примеры существования огромных различий в содержа-

нии ДНК между близкородственными видами (так называемый

"С-парадокс") свидетельствуют о том, что далеко не все

участки ДНК связаны с информационными функциями. Понятия ге-

нома и ДНК в значительной степени тождественны, так как

основные принципы организации и функционирования генома це-

ликом определяются свойствами ДНК. Присущие этим молекулам

потенциальные возможности практически неограниченного струк-

турного разнообразия определяют все многообразие мира живых

существ, как на уровне межвидовых, так и индивидуальных раз-

личий в пределах одного вида (Баев и др.,1990; Ратнер,1985).

Процесс эволюции и дифференцировки отдельных видов, как

правило, сопровождался накоплением изменений в структуре ге-

нома. Это касается, прежде всего, таких параметров, как ло-

кализация и характер упаковки ДНК в клетках; количество ДНК,

приходящееся на гаплоидный геном; типы, соотношение и функ-

ции кодирующих и некодирующих нуклеотидных последователь-

ностей; регуляция экспрессии генов; межпопуляционная вариа-

бильность и филогенетический консерватизм первичной структу-

ры генома. В пределах одного вида основные параметры генома

достаточно постоянны, а внутривидовое разнообразие обеспечи-

вается за счет мутационной изменчивости, то есть выпадения,

вставки или замены нуклеотидов на сравнительно небольших

участках ДНК. Чаще всего такие изменения касаются не-

экспрессируемых элементов генома (интронов, псевдогенов,

межгенных спэйсерных участков ДНК и т.д.).

Геномы эукариот, по-существу, можно рассматривать как

мультигеномные симбиотческие конструкции, состоящие из обли-

гатных и факультативных элементов (Golubovsky, 1995). Основу

облигатных элементов составляют структурные локусы, коли-

чество и расположение которых в геноме достаточно постоянно.

Присутствие в хромосомах некоторых видов повторяющихся ДНК,

амплифицированных участков, ретровирусных последователь-

ностей, псевдогенов, также как наличие в клетке эписом, рет-

ротранскриптов, ампликонов, дополнительных B-хромосом и раз-

личных цитосимбионтов (вирусов, бактерий, простейших) явля-

ется не строго обязательным, их количество и положение может

значительно варьировать, то есть эти элементы являются фа-

культативными. В то же время участие факультативных элемен-

тов в наследственной передаче признаков, в формировании му-

тационной изменчивости и в эволюционных преобразованиях ви-

дов несомненно доказано. Кроме того, существует непрерывный

переход от одних состояний к другим за счет инсерции

экстрахромосомных ДНК в хромосомы и выстраивания транспозо-

ноподобных мобильных элементов из хромосом. Следовательно,

несмотря на значительные отличия факультативных последова-

тельностей от облигатных по характеру основных информацион-

ных процессов (репликации, транскрипции, трансляции и сегре-

гации), они также должны рассматриваться, как важнейшие эле-

менты генома.

Остановимся теперь более детально на основных принципах

организации генома человека. В каждой диплоидной клетке с 46

хромосомами содержится около 6 пикограмм ДНК, а общая длина

гаплоидного набора из 23 хромосом составляет 3.5 * 10!9 пар

нуклеотидов (Kao, 1985). Этого количества ДНК достаточно для

кодирования нескольких миллионов генов. Однако, по многим

независимым оценкам истиное число структурных генов нахо-

дится в пределах от 50 000 до 100 000. В разделе 2.4 изложе-

ны современные подходы, используемые для подсчета общего ко-

личества генов, из которых следует, что наиболее вероятная

оценка их числа составляет около 80 000. Сопоставляя это

значение со средними размерами гена и соотношением между ве-

личиной их экзонных и интронных областей, можно заклю-

чить,что кодирующие последовательности ДНК занимают не более

10-15% всего генома (McKusick, Ruddle, 1977). Таким образом,

основная часть молекул ДНК не несет информации об амино-

кислотной последовательности белков, составляющих основу лю-

бого живого организма, и не кодирует структуру рибосомаль-

ных, транспортных, ядерных и других типов РНК. Функции этой

"избыточной" (junk) ДНК не ясны, хотя ее структура изучена

достаточно подробно. Предполагается, что эта ДНК может

участвовать в регуляции экспрессии генов и в процессинге

РНК, выполнять структурные функции, повышать точность гомо-

логичного спаривания и рекомбинации, способствовать успешной

репликации ДНК и, возможно, является носителем принципиально

иного генетического кода с неизвестной функцией.

Наиболее общая характеристика генома может быть получена

с помощью анализа кинетики реассоциации молекул ДНК. Динами-

ка плавления геномной ДНК обнаруживает присутствие по край-

ней мере трех различающихся по химической сложности фракций

(Льюин, 1987; Газарян, Тарантул, 1983). Быстро ренатурирую-

щая фракция ДНК состоит из относительно коротких высокопов-

торяющихся последовательностей; в промежуточную фракцию вхо-

дит множество умеренно повторяющихся ДНК - более протяжен-

ных, но представленных меньшим числом копий; медленно рена-

турирующая фракция объединяет в себе уникальные последова-

тельности ДНК, встречающиеся в геноме не более 1-2 раз.

С помощью молекулярного анализа проведена идентификация

основных классов повторяющихся последовательностей ДНК,

составляющих более 35% всего генома человека и включающих

сателлитную ДНК, инвертированные повторы, умеренные и низко-

копийные повторы, а также мини- и микросателлитные последо-

вательности ДНК. Классификация этих типов повторов достаточ-

но условна и основана, главным образом, на двух характе-

ристиках: длине повторяющихся коровых единиц, которая может

варьировать от 1-2 до более, чем 2000 п.о., и числе их ко-

пий, также меняющихся в очень широких пределах - от десятка

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14


© 2010
Частичное или полное использование материалов
запрещено.