РУБРИКИ |
: Литература - Другое (книга по генетике) |
РЕКОМЕНДУЕМ |
|
: Литература - Другое (книга по генетике)го рождения больного ребенка может достигать 14% (Essen et al.,1992). У многих пациентов с миопатией Дюшенна при иммуногисто- химическом окрашивании мышц обнаруживаются редкие дистро- фин-положительные волокна. Однако, при использовании антител с антигенными детерминантами, кодируемыми делетированным участком гена, окрашивания не происходит и это позволяет от- вергнуть гипотезу соматического мозаицизма. Наиболее вероят- ный механизм такого явления - возникновение второй сомати- ческой делеции в мышечных клетках, устраняющей сдвиг рамки считывания, вызванный основной делецией. В результате му- тантный ген может транскрибироваться с образованием стабиль- ного, хотя и аномального дистрофина (Klein et al.,1992). Имеется модельная линия мышей с миодистрофией Дюшенна - mdx. Эта модель была получена в результате отбора мутации, спонтанно возникшей в C57BL/10 линии (Bulfield et al., 1984). В мышцах и в мозгу у мышей этой линии обнаруживается резко сниженное количество Dmd-мРНК, однако дистрофин пол- ностью отсутствует. Несмотря на это, никаких видимых клини- ческих аномалий у mdx-мышей не наблюдаются. Идентифицирована нонсенс мутация в mdx-гене, в результате которой у мышей транслируется лишь 27% дистрофинового полипептида. Обнаруже- на также сплайсинговая мутация, приводящая к вырезанию экзо- на 7 DMD-гена у собак (Sharp et al., 1992). В серии экспериментов на mdx-мышах доказана принципи- альная возможность генокоррекции МД. Появление дистрофина человека в сарколемме мышечных волокон mdx-мышей наблюдали после введения ретровирусных или аденовирусных генноинженер- ных конструкций, содержащих полноразмерную кДНК гена дистро- фина (14 кб) или его делетированную, но функционально актив- ную форму, так называемый мини-ген (6.3 кб) (Wells et al., 1992; Cox et al., 1993; Aсsadi et al., 1995). После внутри- венного введения фрагментов Dmd-гена в составе рекомбинант- ного аденовируса наблюдали длительное присутствие экзогенной ДНК в скелетных и сердечных мышцах животных (Srataford-Perricaudet et al., 1992). Несмотря на эти оче- видные успехи, проблема генноинженерной коррекции МД еще да- лека от своего решения. До сих пор ведутся оживленные дебаты исследователей о перспективности генной терапии МД по срав- нению с клеточной терапией (пересадка здоровых эмбриональных миобластов). Пока не утверждена ни одна программы клини- ческих испытаний генотерапевтического подхода МД (см.Главу IX). Основная сложность проблемы генокоррекции - необходи- мость обеспечения системы эффективной доставки гена дистро- фина в миофибриллы не только скелетных мышц, но, что особен- но важно - в мышцы сердца и диафрагмы. В 1995г. исследования по генотерапии МД начаты в рамках программы Геном человека и в нашей стране. 10.4.3 Гемофилия А. Гемофилия А - сцепленное с полом заболевание, вызванное наследственным дефектом фактора VIII, важнейшего звена в системе свертывания крови (cм. Табл. 10.4). Комплекс фактора YIII с молекулярным весом более 1 миллиона состоит из 2-х компонентов. Главный компонент - YIIIC, кодируется геном F8C, локализованным в X-хромосоме. С YIIIC нековалентно свя- зан фактор Виллебранда - YIIIR, кодирующийся аутосомным ге- ном. Фактор Виллебранда стабилизирует фактор VIII и регули- рует его активность. Ген F8C - одним из очень крупных генов человека; содер- жит 26 экзонов (размером от 69 до 3106 нуклеотидов). Общая длина интронов соствляет 177 кб; около 20% этой ДНК прихо- дится на интрон 22 (32.4 кб). мРНК гена F8С размером 9 009 нуклеотидов включает 5'нетранслируемую последовательность (150 п.о.), 3'нетранслируемую последовательность (1 806 п.о.) и кодирующий фрагмент (7053 п.о.). Внутри гена F8 в интроне 22 локализовано еще два других структурных гена не- известной природы - F8А и F8В, что было обнаружено методами молекулярный анализ. Ген F8A, целиком локализованный в инт- роне 22 гена F8C, не содержит интронов и транскрибируется в направлении, противоположном фактору VIII (3'-5'). Первый экзон гена F8B также расположен в интороне 22, а следующие его области распределены до экзонов 23-26; транскрибируется он в том же направлении, что и ген F8C (5'-3'). Оба гена экспрессируются во всех тканях (Levinson et al.,1990; Freije,Schlessinger, 1992; Lakich et al., 1993). Интрон 22 оказался необычным и в том отношении, что содержит CpG-ост- ровок на расстоянии около 10 кб от экзона 22 - предположи- тельное место локализации бинаправленного промотора для ге- нов F8A и F8B. Оказалось, что на расстоянии примерно 500 кб в 5-'направлении от гена F8 находятся еще 2 транскрибируемые копии гена F8A (Lakich et al.,1993). Во время процессинга первичного белкового продукта гена F8C от исходного пептида из 2 351 аминокислотных остатка от- щепляется последовательность в 335 аминокислотных остатка. В плазме крови фактор VIII существует в виде металлозависимого гетеродимера, состоящего из С-концевой легкой цепи (80 кД) и N-концевой тяжелой цепи (200 кД). Половина всех больных с гемофилией A не имеют фактора VIII, 5%- имеют нормальное ко- личество нефункционирующего белка и в остальных случаях ак- тивность белка сохранена, но его количество резко снижено (McGinnis et al.,1993). Изолированные случаи гемофилии A составляют 30%; 70% - семейные варианты. Показано, что мутации в гене F8 возникают в сперматогенезе в 3 - 5 раз чаще, чем в оогенезе (Rosendaal et al., 1990; Brocker-Vriends et al., 1991). Это означает, что в 80-86% спорадических случаев матери являются носителя- ми мутации, возникшей в зародышевых клетках их отца. Кроме того, около 14% матерей, не являющихся носителями мутации, могут быть соматическими или гонадными мозаиками, так что вероятность повторного рождения больного ребенка у них также повышена. Около 10% всех идентифицированных мутаций в гене F8 яв- ляются делециями одного или нескольких смежных экзонов. При- мерно 5% всех мутаций составляют короткие делеции и дуплика- ции гена, остальные мутации - точковые замены (Antonarakis et al.,1995). Почти половина миссенс мутаций идентифицирова- на в домене A2. Показано, что 35% всех известных мутаций ло- кализовано в CpG динуклеотидах, причем свыше 90% из них представляют собой C-T или G-A транзиции (Cooper, Youssoufian, 1988). Подобные мутации в кодирующих районах встречаются в 42 раза чаще, чем это можно было бы ожидать на основании случайного характера мутагенеза. Для подавляющего большинства мутаций гена F8C характерно практически полное отсутствие "горячих" точек: каждая семья высокого риска по гемофилии А имеет свою собственную мутацию. Исключение составляет группа обнаруженных сравнительно недавно протя- женных инверсий интрона 22, захватывающих экзоны 1-22 и пол- ностью блокирующих функцию гена. Такие инверсии, как оказа- лось, присутствуют в 45% семей с тяжелой формой гемофилии А (Lakich et a.,1993). Причиной инверсий в этой области гена является гомологичная рекомбинация между идентичными после- довательностями гена F8А, расположенного в интроне 22 F8C-гена, и другими копиями этого же гена,находящимися на расстоянии 500 кб от 5'конца гена F8 (см.выше). Помимо инверсий и точечных мутаций в гене ФVIII заре- гистрированы несколько случаев инсерционного мутагенеза, связанных с перемещением в геноме транспазонподобных элемен- тов типа LINE ( см. Главу II). У двух пациентов неродствен- ного происхождения был идентифицирован инсертированный в эк- зоне 14 F8C-гена длинный элемент LINE-1 (L1) (Kazazian et al.,1988). В обеих семьях это были мутации de novo. L1 последовательности представляют собой специфическое для ге- нома человека семейство длинных, размером от 2 до 4 кб, пов- торяющихся элементов, распределенных по всем хромосомам и состоящее, примерно, из 100 000 копий. Было показано что оба L1 элемента, инсертированные в F8C-ген, родственны ретрот- ранспозону, локализованному на хромосоме 22 (Dombroski et al., 1991). В третьей семье инсертированный в интроне 10 F8C-гена L1 элемент не был связан с болезнью. Все 3 L1 эле- мента имели открытые рамки считывания, а соответствующие ре- конструируемые аминокислотные последовательности были высоко идентичны друг другу с уровнем гомологии, превышающим 98%. Таким образом, были получены еще одни косвенные подтвержде- ния существования ряда функциональных L1 элементов, кодирую- щих 1 или несколько белков, необходимых для их ретротранспо- зиции. Прямая диагностика протяженных инверсий в гене F8 осу- ществляется путем блот-гибридизации с ДНК зондом р482.6 c последующей рестрикцией эндонуклеазами Bcl1, Dra1, Nco1 (Lakich et al.,1993). В остальных случаях, в силу отсутствия мажорных мутаций в гене F8C, чаще всего используют косвенные методы молекулярной диагностики. С помощью ПЦР анализируют полиморфные динуклеотидные СА-повторы экзона 13, HindIII по- лиморфизм в интроне 19; HbaI полиморфизм в интроне 22 и вне- генный полиморфизм локуса DXS52 (St14/TaqI) (Асеев и др., 1989; Aseev et al., 1994; Сурин и др., 1990). Учитывая наличие функционально активной формы белка фактора VIII в плазме крови генноинженерые подходы в терапии этого заболевания направлены на получение в чистом виде пол- ноценного белкового продукта (заместительная терапия), либо на введение в организм больного соответствующей кДНК, обеспечивающей синтез ФVIII и его поступление в кровь. Осу- ществленное 10 лет назад выделение и клонирование кДНК этого гена сделало реальным оба эти подхода. Имеются сообщения о получении трансгенных животных (коз), в геном которых введен ген фактора VIII. Они могут быть использованы как продуценты полноценного белкового продукта. Генная терапия этого забо- левания находится на стадии экспериментальных разработок (см.Главу IX). Успешно осуществлена трансдукция фибробластов человека in vitro с помощью ретровирусного вектора. Основная проблема в данном направлении заключается в выборе эффектив- ного промотора и подборе клеток, в которых экспрессия гена могла быть достаточно длительной. В настоящее время найдены невирусные промоторы, обеспечивающие эффективную и длитель- ную экспрессию гена фактора VIII in vivo. В качестве возмож- ных клеток-мишеней используют мышечные клетки, фибробласты, гепатоциты и клетки эндотелия сосудов. В 1994г. методом нап- равленного мутагенеза (см.Главу VIII) получены трансгенные модели гемофилии А на мышах. Есть все основания считать, что клинические испытания генокоррекции этого заболевания нач- нутся уже в ближайшем будущем. 10.4.4 Гемофилия B. Гемоофилия B - сцепленное с полом заболевание, вызван- ное наследственным дефектом фактора IX - важного компонента средней фазы внутреннего каскада свертывания крови. Белок (фактор IX) - гликопротеин, состоит из 415 аминокислотных остатков, объединенных в 8 доменов, синтезируется в виде мо- лекулы-предшественника клетками печени. В плазме крови фак- тор IX находится в виде гетеродимера, состоящего из 2-х по- липептидных цепей - легкой (L) и тяжелой (H), ковалентно связанных между собой одним дисульфидным мостиком. Фактор IX циркулирует в виде неактивного зимогена до тех пор, пока не произойдет протеолитическое высвобождение его активирующего пептида, что позволяет ему принять конформацию активной се- риновой протеазы. Его роль в свертывании крови связана с ак- тивацией фактора X посредством взаимодействий с ионами каль- ция, фосфолипидами мембраны и фактором VIII. Ген фактора IX транскрибируется в гепатоцитах с образо- ванием мРНК размером 1 383 п.о. Для гена F9 характерна высо- кая частота возникновения мутаций - 4.1*10!6 за поколение. Также как и при гемофилии A мутации значительно чаще возни- кают в сперматогенезе, чем в оогенезе (Montandon et al.,1992). Считается, что вероятность получения мутации от отца в 11 раз выше, чем от матери. Это означает, что в изо- лированном случае вероятность гетерозиготного носительства мутации у матери составвляет более 80%. Обнаружена четкая корреляция между возрастом отца и вероятностью получения от него новой мутации в гене F9. Так, средний возраст отца в момент рождения дочери - носительницы новой мутации, состав- ляет около 42 лет (King et al.,1992). К 1994 г идентифицировано около 400 мутаций в гене ге- мофилии B. Подавляющее большинство из них замены нуклеоти- дов, приводящие к заменам аминокислот или к образованию стоп-кодонов. Характерно, практически, полное отсутствие вы- раженных мажорных мутаций и доминирующих областей повышенной частоты мутирования. Только одна мутация - I397T, встрети- лась в 7 самьях. Около 42% точечных мутаций возникает в CpG динуклеотидах (Bottema et al., 1993). Показано, что частота G-A или C-T транзиций в CpG cайтах в 24 раза выше, чем в других местах гена (Koeberl et al., 1990). Кроме того, в CpG динуклеотидах гена F9 в 7.7 раз чаще возникают трансверсии (A-T, A-C, G-T или G-C). Это обьясняется тем, что содержание (G+C) в кодирующих областях F9-гена составляет 40% (Bottema et al., 1991). В 40% случаев при тяжелых, ингибиторных формах гемофи- лии В у пациентов обнаруживаются делеции различной протяжен- ности. Около 10% точковых мутаций локализовано в донорных или акцепторных сайтах сплайсинга или создают новые сайты сплайсинга внутри интронов. В одной семье разрушение гена произошло в результате инсерции Alu-элемента в экзон 5 (Vidaud et al., 1993). Описано 13 точковых мутаций в промо- торной области гена F9. Именно с такими мутациями связана Лейденовская (Leyden) форма заболевания, при которой к воз- расту половозрелости наступает улучшение многих клинических показателей и, в частности, исчезает кровоточащий диатез. Обьясняется это тем, что мутации в промоторной области могут приводить к переключению конститутивной экспрессии гена на стероид-гармон-зависимую, нарушая связывание гепатоцитарного ядерного фактора 4 (HNF-4), принадлежащего к суперсемейству транскрипционных факторов для рецепторов стероидных гормонов. Гемофилия B была использована как модель для выработки стратегии генетического консультирования при моногенных за- болеваниях, обладающих выраженной мутационной гетероген- ностью (Giannelli et al., 1992). Основой такой стратегии яв- ляется составление национальных баз данных молекулярных де- фектов и специфических методов их диагностики. В частности, основываясь на подобной информации, авторы провели характе- ристику мутаций в группе из 170 неродственных индивидуумов с гемофилией B шведского и английского происхождения и только в одном случае им не удалось идентифицировать мутацию. Молекулярная диагностика гемофилии В проводится как непрямыми так и прямыми методами. Непрямая диагностика осно- вана на анализе методом ПЦР внутригенных полиморфных сайтов: Taq1 (в положении 11 109-11 113); инсерционного полиморфизма в интроне А (рестриктазы Hinf1 и Dde1) ; Taq1 в интроне F в положении 72. Метод ПДРФ анализа информативен только у 60-70% всех семей с гемофилией В (Aseev et al., 1994; Сурин и др., 1994). Прямая диагностика гемофилии В включает ампли- фикацию геномных фрагментов гена фактора IX с последующей детекцией ошибок комплементации методом mismatch detection (см.Главу IV) и прямое секвенирование продуктов амплификации (Montadont et al.1990). Сравнительно небольшие размеры гена, присутствие белко- вого генопродукта в сыворотке крови и наличие естественных биологических моделей способствовали быстрому прогрессу исследований по генотерапия гемофилии В, которая в настоящее время уже включена в программы клинических испытаний. Успеш- ная трансдукция и коррекция генетического дефекта получена в опытах in vitro и in vivo на самых различных модельных системах (Culver, 1994; Gerrard et al., 1993). Так, при вве- дении полноразмерной кДНК в составе ретровирусного вектора в первичные культуры кератиноцитов человека наблюдали экспрессию F9 и секрецию биологически активного фактора IX. После трансплантации этих трансдуцированных клеток nu/nu мы- шам человеческий фактор IX в небольшом количестве появлялся в кроветоке и сохранялся там в течение недели (Gerrard et al.,1993). На собаках, страдающих гемофилией B, осуществлена трансдукция гепатоцитов in vivo путем прямой инфузии реком- бинантного ретровирусного вектора в портальную вену. При этом наблюдали устойчивую экспрессию фактора IX в течение более 5 месяцев и улучшение биохимических показателей свер- тываемости крови (Kay et al.,1993). Имеется сообщение об успешной коррекции гемофилии В в Китае в 1992г. Двум больным мальчикам в кожу спины трансплантировали культуру аутологич- ных фибробластов, предварительно трансдуцированных ex vivo рекомбинантной кДНК гена FVIII. Несмотря на определенный скептицизм в оценке этого достижения со стороны специа- листов, нет сомнения в том, что успешная генотерапия гемофи- лии В - событие самого ближайшего будущего. 10.4.5 Болезнь Виллебранда. Болезнь Виллебранда- аутосомно-доминантное (при некото- рых формах рецессивное) заболевание, обусловленное наследственным дефицитом белка VIIIR, родственного фактору VIIIС свертывания крови (см.Гемофилия А) и известного, как фактор фон Виллебранда. Этот большой гликопротеин синтезиру- ется клетками эндотелия, в которых специфическая YIIIR-мРНК составляет 0.3%, и поступает в кровь в виде двух мультимеров с молекулярными весами от 850 кД до 20 миллионов дальтон. Фактор VIIIR осуществляет взаимодействие между стенкой сосу- дов и тромбоцитами, регулируя их адгезию в местах поврежде- ния эндотелия. Фактор VIIIR участвует также в регуляции син- теза и секреции фактора YIIIC и стабилизирует комплекс фак- тора VIII. Различают 7 типов болезни Виллебранда - I, IIA-IIE и III (Zimmerman, Ruggeri, 1987). При типе I снижена концент- рация всех мультимеров в плазме, но их качество не нарушено. Генетически эта форма заболевания подразделяется на ре- цессивные и доминантные варианты. Типы IIC и III - рецессив- ны. Тип II характеризуется качественными аномалиями фактора VIIIR, выражающимися в уменьшении способности формировать большие мультимеры, (типы IIA и IIC) или в увеличении ско- рости их выведения из плазмы (тип IIB). Ген F8VWF достаточно протяженный и состоит из 52 экзонов, размерами от 40 до 1379 п.о. (Mancuso et al., 1989). Величи- на интронов варьирует в огромных пределах (от 100 до 20 000 пар нуклеотидов). Сигнальный пептид и пропептид кодируются первыми 17 экзонами, в то время как зрелая субьединица VIIIR- фактора и 3'нетранслируемая область - остальными 35 экзонами. Внутри гена идентифицированы повторяющиеся после- довательности, включая 14 Alu-элементов и полиморфный TCTA повтор размером около 670 п.о. в интроне 40. Районы гены, кодирующие гомологичные домены, имеют сходную структуру. На хромосоме 22q11-q13 обнаружен псевдоген длиной 21-29 кб, соответствующий экзонам 23-34 F8VWF-гена (Mancuso et al., 1991). Идентифицированные в нем сплайсинговые и нонсенс му- тации препятствуют образованию функционального транскрипта. Наибольшее число мутаций идентифицировано при типе II болезни Виллебранда. Подавляющее большинство из них - замены аминокислот, чаще всего происходящие в результате транзиций в CpG динуклеотидах (Cooney et al., 1991; Randi et al., 1991; Donner et al., 1992). Мутации при болезни типа IIA кластерированы в A2 домене, где предположительно локализован сайт протеолетического отщепления, в то время, как при типе IIB - в домене, обеспечивающим взаимодействие с тромбоцитар- ным гликопротеиновым комплексом (Ib-IX рецептором). Большая группа мутаций при форме заболевания IIB локализована в сег- менте из 11 аминокислот внутри единственного дисульфидного изгиба (loop), соединяющего цистеины в 509 и 695 положениях. При форме заболевания Нормандского типа, мимикриющей гемофи- лию A, фактор Виллебранда структурно и функционально норма- лен, за исключеним того, что нарушено его взаимодействие с фактором YIII. У таких пациентов действительно идентифициру- ются миссенс мутации, расположенные в области гена, кодирую- щей сайты связывания фактора VIIIR с фактором VIIIС (Mazurier, 1992). Тип III представляет собой наиболее тяжелую форму забо- левания, при которй фактор VIIIR, как правило, отсутствует. Получены доказательства, что такие пациенты являются гомози- готами или компаундами по нонсенс мутациям, обнаруживаемым в одной дозе у больных типа I (Zhang et al., 1992). При этом же типе заболевания выявлен кластер мутаций со сдвигом рамки считывания, возникаюших в результате делеции одного из 6 ци- тозинов в положении 2679-2684 экзона 18. Именно такая мута- ция была обнаружена в семье, зарегистрированной впервые фон Виллебрандом в 1926 году. У некоторых членов этой родослов- ной как было установлено недавно, она находилась в компаунде с мутацией P1266L, возникшей в результате рекомбинации между геном F8VWF и псевдогеном (см. выше) (Zhang et al., 1993). Выбор адекватного метода молекулярной диагностики бо- лезни Виллебранда в значительной мере предопределяется пра- вильностью предшествующей клинической и лабораторной диаг- ностики и результатами медико-генетического консультирова- ния, позволяющей достаточно четко определить характер насле- дования заболевания в семье высокого риска и установить его форму. К сожалению, достичь этого далеко не всегда возможно, а отсутствие характерных мажорных мутаций значительно снижа- ет эффективность прямой молекулярной диагностики. Вместе с тем, по крайней мере, в некоторых популяций (Финляндия, Шве- ция) обнаружены "горячие" точки мутаций, которыми являются экзоны 18 и 42, при типе II болезни Виллебранда (Holmberg et al,1993). В популяциях России такие "горячие " точки пока не обнаружены, хотя исследования в этом направлении ведутся (Асеев, Шауи Абдельрхани, 1995). Значительно более перспек- тивной на современном этапе представляется непрямая диаг- ностика. В промоторной части гена, в интронах 15, 17, 23, 40, 41, 49, а также в экзонах 26, 35, 39 иденти- фицированы многочисленные полиморфные сайты рестрикции с достаточно высоким уровнем полиморфизма. Особенно перспек- тивным для диагностики является полиморфизм интрона 40, представляющий собой две области варьирующих по числу тетрамерных повторов ТСТА на расстоянии 212 п.о. Амплифика- ция этой части интрона 4О с помощью ПЦР, рестрикция AluI с последующим электрофоретическим разделением позволяет иден- тифицировать до 98 аллельных вариантов этого полиморфизма (Mercter et al.,1991). Столь выраженный полиморфизм позволя- ет с высокой эффективностью маркировать мутантную хромосому (ген) и проследить её передачу в потомстве. Сведения о генокоррекции болезни Виллебранда в доступ- ной литературе не обнаружены. 10.4.6 Фенилкетонурия. Фенилкетонурия (ФКУ) - одно из наиболее частых аутосом- но-рецессивных заболеваний, обусловленных наследственным де- фектом фенилаланингидроксилазы, приводящим при отсутствии своевременной терапии к тяжелой умственной отсталости. В Ев- ропе один больной ребенок встречается в среднем среди 10 - 17 000 новорожденных. В Ирландии и Шотландии частота ФКУ достигает 1 на 4500 новоржденных (DiLella et al., 1986). Распространена ФКУ также в Польше и в Белоруссии. В России частота заболевания колеблется в пределах 1 : 8 - 10 000. Очень важна ранняя диагностика ФКУ, так как при своевремен- ном назначении пациенту диеты, не содержащей фенилаланин, умственная ограниченность, как правило, не развивается или имеет очень стертые формы. Разработаны биохимические скрини- рующие тесты диагностики ФКУ у новорожденных. Гидроксилирование фенилаланина является достаточно сложным процессом, в котором участвуют, по крайней мере, 3 фермента. Фенилаланингидроксилаза (РАН), гомополимерный фер- мент, состоящий из субъединиц с молекулярным весом 52 кД, продуцируется клетками печени и регулирует превращение L-фе- нилаланина в L-тирозин. Его дефицит приводит к накоплению фенилаланина в сыворотке крови. Гиперфенилаланинемия может возникать также при дефиците дигидроптеридинредуктазы и при дефектах синтеза биоптерина. Однако, эти заболевания, хотя и сопровождаются снижением активности РАН, значительно отлича- ются от классической ФКУ и не коррегируются диетой, лишенной фенилаланина. PAH-ген транскрибируется в гепатоцитах с образованием мРНК размером 2.4 кб. Наиболее распространенный тип мутаций - однонуклеотдные замены (миссенс, нонсенс, мутации в сайтах сплайсинга), причем часто эти мутации являются результатом транзиций в 22-х обнаруженных в PAH-гене CpG динуклеотидах. Крупных структурных перестроек не найдено, хотя имеется не- большой процент точечных делеций. Отмечается неравномерный характер внутригенной локализации мутаций (Scriver et al.,1989). Так, наибольшее число миссенс мутаций встречается в центральной части гена: в экзоне 7, кодирующем участок связывания белка с кофактором, где располжено 5 CpG дупле- тов, а также в экзонах 9 и 12. Преимущественный район лока- лизации делеций - экзоны 1, 2 и 3. Втури РАН-гена локализованоно более 10 полиморфных сай- тов рестрикции, причем распределения гаплотипов по этим мар- керам среди представителей разных рас и этнических групп значительно различаются. Обнаружено сильное неравновесие по сцеплению между определенными мутациями в PAH-гене и гапло- типами по внутригенным сайтам рестрикции. Так, каждая из 5-и наиболее частых в европейских популяциях мутаций ассоцииро- вана только с одним из более, чем 70 гаплотипов по 8 рест- рикционным полиморфизмам (Eisensmith et al., 1992). Мажорная в западно-европейских популяциях сплайсинговая мутация в до- норном сайте 12-го интрона сцеплена с гаплотипом 3 (DiLella et al.,1986). В то же время другая мутация в экзоне 12 - R408W, наиболее распространенная на востоке Европы, в част- ности в Белоруссии и России, и не найденная в Японии и Ки- тае, связана с гаплотипом 2 (DiLella et al.,1987). Мажорная в Европе мутация R158Q в 40% сцеплена с гаплотипом 4, наиболее частым среди жителей Японии и Китая. Распространенная в Тур- ции сплайсинговая мутация в интроне 10, приводящая к 9-и-нуклеотидной инсерции, ассоциирована с "южными" гаплоти- пами 6, 10 и 36. Сопоставление частот различных гаплотипов по полиморф- ным сайтам рестрикции и мутаций в PAH-гене в разных популя- циях, национальностях и этнических группах позволяет сделать вывод , что большинство из них, или даже все, произошли уже после дивергенции рас. Распространение мажорных мутаций гена РАН в различных популяциях и этнических группах связано с эффектом основателя. По некоторым оценкам эти мутации воз- никли однократно от нескольких сотен до нескольких тысяч лет тому назад. Однако, в ряде случаев распределение мутаций не может быть обьяснено в генетических терминах, сопоставимых с демографической историей. Несомненно доказанными являются примеры независимого и рекуррентного возникновения в разных популяциях таких мутаций, как R261Q или R158Q. Высокие попу- ляционные частоты специфических мутаций в PAH-гене связаны, по-видимому, не только с эффектом основателя и/или с сущест- вованием эндогенных механизмов повышенного мутагенеза, но и с преимуществом гетерозигот. Высказано предположение, что носительство РАН - мутаций повышает устойчивость организма к токсическому эффекту охратоксина А, продуцируемого некоторы- ми видами грибковой плесени (Aspergillus, Penicillium), раз- вивающимися при хранении зерна и других продуктов (Woolf,1986). Предполагается, что беременные женщины, гете- розиготные пл РАН -мутациям имеют меньшую вероятность абор- та, индуцированного действием этих микотоксинов. Возможно, высокая частота ФКУ в Ирландии и Шотландии частично может быть обьяснена мягким и влажным климатом этих стран, способствующем росту таких грибов. В медицинской практике используется как прямая, так и косвенная диагностика мутаций в PAH-гене. Разработан очень быстрый и эффективный метод ПЦР/StyI-диагностики cамой частой в России (более 70%) мутации R408W (Ivaschenko, Baranov, 1993; Иващенко и др., 1993). Дигностика других ма- жорных мутаций в PAH-гене осуществляется методами ПЦР+АСО, аллель-специфической амплификации (ARMS), методом одноните- вого конформационного полиморфизма (SSCP) (см. Главу IY). При первичном обследовании семьи черезвычайно удобно исполь- зовать три полиморфные нейтральные мутации в кодонах 232, 245 и 385, сцепленные в Кавказских популяциях с определенны- ми ПДРФ-гаплотипами, а значит и со специфическими мутантными аллелями. Каждая из этих мутаций создает новый сайт рестрик- ции и поэтому их аллельное состояние может быть легко проти- пировано с помощью амплификации и рестрикции (Kalaydjieva et al., 1991). При анализе семьи, в которой отсутствуют легко идентифицируемые прямыми методами мутации, молекулярная ди- агностика может быть проведена с помощью внутригенных поли- морфных сайтов рестрикции. Удобен, в частности, Msp1-поли- морфизм в 8-м экзоне, анализ которого может быть осуществлен методом ПЦР/рестрикции (Wedmeyer et al., 1993). В последнее время появились даные о наличии высокополиморфных сайтов внутри интронов гена РАН, которые оказались особенно удобны- ми для молекулярного маркирования мутантных аллелей (Goltzov et al.1994). Генокоррекция ФКУ успешно осуществлена в опытах in vitro и в настоящее время находится на стадии эксперимен- тальной разработки (Табл.9.2. Глава IX). 10.4.7 Синдром Леш-Нихана. Синдром Леш-Нихана - рецессивное сцепленное с полом за- болевание, обусловленное наследственной недостаточностью ги- поксантин-гуанин фосфорибозилтрансферазы (HPRT) и сопровож- дающееся тяжелыми поражениями центральной нервной системы. Фермент HPRT участвует в регуляции метаболизма пуринов, контролируя превращение гуанина и инозина в соответствующие рибонуклеотиды. Ген HPRT экспрессируется во всех типах кле- ток с образованием мРНК размером 654 п.о.. Культивируемые линии клеток, дефектные по HPRT, устойчивы к 8-азагуанину и 6-тиогуанину, и таким образом, могут быть отобраны на соот- ветствующих селективных средах. Гетерозиготные носители му- таций по HPRT-гену могут быть легко выявлены по наличию 2-х типов клеток - устойчивых и чувствительных к 8-азагуанину, в первичной культуре фибробластов или в клетках волосяных лу- ковиц. В большинстве мутантных клеточных линий количество мРНК нормально, а белок отсутствует. У части пациентов хотя и транскрибируется достаточно много мРНК, но в этих молеку- лах обнаруживаются структурные и функциональные аномалии. В небольшом проценте случаев у больных не удается выявить ни белка, ни мРНК. В 15% хромосом у больных с синдромом Леш Нихана ген HPRT вовлечен в крупные структурные перестройки, корторые могут быть выявлены методами Саузерн или Нозерн блот-гибри- дизации. Синдром Леш Нихана одно из первых моногенных наследственных заболеваний, для которых была проведена моле- кулярная идентификация точечных мутантных аллелей. Именно на этой моделе впервые был разработан и опробован метод анализа мутаций, основанный на расщеплении РНК-ДНК гибридов рибонук- леазой А в местах негомологичноно спаривания (метод расщеп- ления рибонуклеазой А - см.Главу VI, Gibbs, Caskey, 1987). Комбинация методов блот-гибридизации и расщепления рибонук- леазой А позволяет выявить до 50% мутаций. В настоящее время в гене HPRT найдено более 100 спорадических мутаций, полови- на которых - однонуклеотидные замены типа миссенс, нонсенс и в сайтах сплайсинга. Около 40% мутантных хромосом имеют структурные аномалии, в том числе крупные делеции, нехватки отдельных зкзонов и микроделеции одного или нескольких нук- леотидов. В HPRT-гене, практически, отсутствуют мутации, до- мининирующие по частоте в каких-либо популяциях. Исключение составляет нонсенс мутация R170TER, которая составляет около 15% всех нуклеотидных замен (Gibbs et al., 1989). Также как и при гемофилиях мутации гена HPRT чаще возникают в сперма- тогенезе, чем в оогенезе. Вероятность мутирования возрастает с возрастом отца. Идентифицировано 3 HPRT-псевдогена в хро- мосомах 3, 5 и 11 (Stout, Caskey, 1984). Описаны редкие случаи синдрома Леш Нихана у гетерози- готных девочек. При этом, как правило, болезнь развивается вследствие неслучайной инактивации X-хромосомы, не содержа- щей мутации (Ogasawara et al., 1989). Однако, у 3-х женщин - облигатных носительниц мутаций в HPRT-гене, селективный тест не выявил присутствия мутантных клеток в культивируемых фиб- робластах и волосяных луковицах. В связи с этим высказано предположение, что определенные мутации гена HPRT находятся в неравновесном сцеплении с неидентифицированной летальной мутацией в X-хромосоме, что и приводит к селекции клона кле- ток только с одной (мутантной или немутантной по гену HPRT) X-хромосомой (Marcus et al., 1992). Молекулярная диагностика болезни Леш-Нихана возможна прямыми и непрямыми методами. Прямой вариант основан на про- ведении обратной транскрипции мРНК, ее амплификации, SSCP-анализе одноцепочечных ДНК фрагментов с их последующим секвенированием (см.Глава VI). Косвенная диагностика пре- дусматривает маркирование мутантной хромосомы при помощи по- лиморфных сайтов (в частности, локуса DXS52 - зонд St14/TaqI). Как мы уже отмечали (Главы VII,VIII), первая трансген- ная животная модель наследственного заболевания человека, сконструированная путем направленного переноса мутациий в культивируемые эмбриональные стволовые клетки, была получена для синдрома Леш-Нихана (Hooper et al., 1987; Kuehn et al., 1987). На этой моделе впервые была проведена генокоррекция наследственного дефекта in vivo. Эти успехи в значительной степени связаны с существованием селективных сред, позволяю- щих вести автоматический отбор мутантных клеток. Вообще, синдром Леш-Нихана представляет собой идеальную систему не только для изучения пуринового метаболизма, но и для решения многих теоретических вопросов биологии и медицины (Seegmiller, 1989; Maraus et al., 1993; Boyel et al., 1993). Сложность генокоррекции заболевания, однако, заключается в необходимости обеспечения эффективной доставки гена HPRT (или его кДНК) непосредственно в мутантные нервные клет- ки. Эта проблема еще не решена. Поэтому реальные клинические программы генотерапии этого заболевания на сегоднешний день отсутствуют (см.Главу IX). 10.4.8 Болезнь Вильсона-Коновалова. Болезнь Вильсона-Коновалова (БВК) - гепатолентикулярная дегенерация - аутосомно-рецессивное заболевание, обусловлен- ное наследственным дефектом одной из медь-транспортирующих АТФаз. У больных резко снижена концентрация основного медь-содержащего белка плазмы крови - церулоплазмина и в меньшей степени - цитохромоксидазы, еще одного белка, участ- вующего в метаболизме меди. Выделяют, по крайней мере, 3 формы БВК (Cox et al. , 1972). При редкой атипичной форме, предположительно Германского происхождения, у гетерозигот содержание церулоплазмина снижено, по крайней мере, в два раза. При двух других, типичных формах - славянской и юве- нильной, содержание церулоплазмина у гетерозигот находится в пределах нормы. Славянский тип БВК характеризуется сравни- тельно поздним началом и преимущественно неврологической симптоматикой. Ювенильная форма чаще встречается в Западной Европе и ведущими в этиологии заболевания являются печеноч- ные нарушения. Среди евреев-ашкенази встречается БВК с позд- ним началом и почти нормальным содержанием церулоплазмина в сыворотке крови больных. Ген БВК, идентифицированный в 1993г. независимо сразу в 2х лабораториях США, представляет собой медь-транспортирую- щую АТФазу P типа с 6-ю металл-связывающими районами. Ген имеет 60% гомологию по нуклеотидному составу с ранее иденти- фицированным геном АТФ-азы (АТР7А), мутантном при болезни Менкеса (Bull et al., 1993; Petruchin et al., 1993; Tanzi et al., 1993). По аналогии с геном болезни Менкеса, также обусловленной нарушением транспорта меди, ген БВК назван АТР7В. Два пациента с БВК оказались гомозиготными по 7-нукле- отидной делеции в кодирующей области гена ATP7B , что дока- зывало его идентичность гену БВК (Petruchin et al, 1993). Ген экспрессируется в клетках печени, мозга, почках, лимфо- узлах. Типичным для экспрессии АТР7В оказался альтернативный сплайсинг двух и более экзонов центральной части гена (6, 7, 8, 12 и 13). Кодируемый ATP7B-геном белок содержит несколько мемб- ранных доменов, АТФ-консенсусную последовательность, сайт фосфорилирования и, по крайней мере, 2 медь-связывающих сай- та. В мозге, печени, почках и ломфоузлах обнаружены изоформы белка, соответствующие продуктам альтернативного сплайсинга гена АТР7В. Их назначение и функции пока неизвесты. В гене АТР7В идентифицированы полиморфные микросателлитные маркеры, а также около 10 полиморфных сайтов рестрикции. В настоящее время в гене АТР7В идентифицированы более 30 мутаций, в том числе 14 мелких делеций/инсерций, 2 - нонсенс мутации, 15 - миссенс мутаций, 3 - сплайсинговые мутации. Диагностическую ценность для европейцев представляют мутации His1070Gln и Gly1267Lys, зарегистрованные в 28% и 10% всех мутантных хро- мосом, соответственно (Thomas et al., 1995). В заключении данного раздела представляется целесооб- разным кратко рассмотреть другие достаточно частые моноген- ные заболевания, для которых показана и проводится молеку- лярная диагностика, в том числе и пренатальная, в других ме- дико-генетических центрах России и, прежде всего, в Лабора- тории молекулярной диагностики Институтата клинической гене- тики РАМН (Москва). 10.4.9 Адрено-генитальный синдром. Адрено-генитальный синдром - (врожденный дефицит 21-гидроксилазы) - достаточно распространенное аутосомно-ре- цессивное заболевание. Частота "классических" форм 1:10 000 новоржденных, "неклассической" - около 1% в популяции. В за- висимости от характера нарушения функции гена и, соот- ветственно клинических проявлений "классическая форма" под- разделляется на два варианта: 1. летальная сольтеряющая фор- ма; 2. нелетальная - вирилизирующая форма, связанная c из- бытком андрогенов (Morel, Miller, 1991). В локусе 6р21.3, внутри сложного супергенетического комплекса HLA идентифицированы два тандемно расположенных 21-гидроксилазных гена - функционально активный CYP21B и псвдоген - CYP21А, неактивный вследствие делеции в 3-м экзо- не, инсерции со сдвигом рамки считывания в 7-м экзоне и нонсенс мутаций - в 8-м экзоне. Ген и псевдоген разделены смысловой последовательностью гена С4В, кодирующей 4-й фак- тор комплемента. Оба гена состоят из 10 экзонов, имеют длину 3,4 кб и отличаются только по 87 нуклеотидам. Высокая сте- пень гомологии и тандемное расположение указвают на общность эволюционного происхождения этих генов. Любопытно отметить, что такие же тандемно расположенные гены 21-гидроксилазы (называемые также Р450с21) обнаружены и у других млекопитаю- щих, причем у мышей, в отличие от человека, активен только ген CYP21A, но не CYP21B, тогда как у крупного рогатого ско- та функционально активны оба гена. Белок- 21-гидроксилаза ( Р450с21- микросомальный цитох- ром 450) обеспечивает превращение 17-гидроксипрогестерона в 11-дезоксикортизол и прогестерона - в дезоксикортикостерон. В первом случае возникает дефицит глюкокортикоидов и, прежде всего, кортизола, что в свою очередь стимулирует синтез АКТГ, и ведет к гиперплазии коры надпочечников (вирилирующая форма). Нарушение превращения прогестерона в дезоксипрогесте- рон ведет к дефициту альдостерона, что в свою очередь нару- шает способность почек удерживать ионы натрия и приводит к быстрой потере соли плазмой крови (соль теряющая форма). Как и в случае гемофилии А, наличие рядом с кодирующим геном гомологичной ДНК последовательности зачастую ведет к нарушениям спаривания в мейозе и, как следствие этого, к конверсии генов (перемещения фрагмента активного гена на псевдоген), либо к делеции части смыслового гена. В обоих случаях функция активного гена нарушается. На долю делеций приходится около 40% мутаций, на долю конверсий - 20% и при- мерно 25% составляют точечные мутации. Согласно отечествен- ным данным в случае наиболее тяжелой сольтеряющей формы АГС, на долю конверсий приходится более 20% мутантных хромосом, на долю делеций - около 10% (Evgrafov et al., 1995). Непрямая диагностика АГС возможна с помощью типирования тесно сцепленных с геном CYP21B аллелей HLA A и HLA B генов, а также алелей гена HLA DQA1. Прямая ДНК диагностика АГС основана на амплификакции с помощью ПЦР отдельных фрагментов генов CYP21B и CYP21A, их рестрикции эндонуклеазами HaeIII или RsaI и анализе полученных фрагментов после электрофореза (Evgrafov et al., 1995). 10.4.10 Спинальная мышечная атрофия. Спинальная мышечная атрофия (СМА) - аутосомно-рецессив- ное заболевание, характеризуется поражением моторных нейро- нов передних рогов спинного мозга, в результате чего разви- ваются симметричные параличи конечностей и мышц туловища. Это - второе после муковисцидоза наиболее частое летальное моногенное заболевание (частота 1: 6 000 новорожденных). СМА подразделяется на три клинические формы. Тип I. Острая форма (болезнь Верднига-Гоффмана), проявляется в первые 6 ме- сяцев жизни и приводит к смерти уже в первые два года; Тип II. Средняя (промежуточная) форма, пациенты не могут стоять, но обычно живут более 4-х лет; Тип III. Ювенильная форма (болезнь Кугельберга-Веландера) - прогрессирующая мышечная слабость после 2-х лет. Все три формы представляют собой ал- лельные варианты мутаций одного гена SMN (survival motor neurons), картированного в локусе D5S125 (5q13) и идентифи- цированного методом позиционного клонирования (см.Главу III) в 1995г (Lefebvre et al. 1995). В этой пока единственой ра- боте показано, что ген SMN размером всего 20 000 п.о.состоит из 8 экзонов. мРНК этого гена содержит 1 700 п.о. и кодирует ранее неизвестный белок из 294 аминокислотных остатков с молекулярным весом 32 КилоДальтона. Ген дуплицирован. Его копия (возможно вариант псевдоге- на) располагается несколько ближе к центромере и отличается от гена SMN наличием 5-и точечных мутаций, позволяющих отли- чить оба гена путем амплификации экзонов 7 и 8 и их исследо- ванием методом SSCP анализа (см.Главу IV). Ген назван сBCD541, по аналогии с первоначальным вариантом названия для теломерной копии, т 4о 0е 4сть 0гена SMN, tBCD541. Ген cBCD541 экспрессируется, но в отличие от гена SMN его сДНК подверга- ется альтернативному сплайсингу с утратой экзона 7. Отсутствие гена SMN (tBCD541) у 93% больных (213 из 229), его разорванная (interrupted) структура у 13 обследованных пациентов (5.6%) и наличие серьезных мутаций у оставшихся 3-х больных дали основание именно данную теломерную копию гена считать ответственной за заболевание. Существенно отме- тить, что центромерная копия гена обнаружена у 95 4. 05% боль- ных, 4тогд 0а 4как 0 отсутств 4ует она 0 только у 4,4% 4 пациентов 0. В непосредственной близости от теломерного конца гена SMN идентифицирован еще один ген - ген белка-ингибитора зап- рогаммированной гибели нейронов (neuronal apoptosis inhibitory protein -NAIP). При тяжелых клинических формах СМА (Тип I), обусловленных делециями, по-видимому, нередко происходит утрата гена NAIP. Согласно гипотезе авторов СМА возникает при гомозигот- ном состоянии мутаций (обычно-делеций) в гене SMN, 4при этом различ 4ия между 0форм 4ами 0СМА определяются двумя основными фак- торами: 1. числом копий гена cBCD541 (две - в случае Типа I и четыре (возникающих вследствие конверсии между SMN и cBCD541) - в случае Типа III), 2. наличием или отсутствием ген 4а 0NAIP. 4С 0реди всех обследованных СМА-больных 4не 4обнаружены 0случа 4и одновременной 0делеции обоих гомологичных |
|
© 2010 |
|